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General linear methods, as multistage multivalue methods, are the natural
generalizations of linear multistep and Runge–Kutta methods. This survey
contains a discussion of the traditional methods and a motivation for the gen-
eral linear type of generalization. The new methods are introduced in terms
of their formulation and the basic properties of consistency, stability and con-
vergence. The order of general linear methods has to be looked at from a new
point of view and it is shown how to use an algebraic structure (equivalent
to B-series) to express conditions for a given order. Linear and non-linear
stability for the new methods brings the theories for the classical methods
into a comprehensive formulation and known results are outlined. Recently a
number of subfamilies have been introduced and some of these are considered
in detail. This applies in particular to methods with the property known as
‘inherent Runge–Kutta stability’. These seem to have prospects of yielding
useful and efficient methods, and some progress towards their practical im-
plementation is outlined. Finally, the relationship between stability functions
and order of methods is discussed in a setting wide enough to include gen-
eral linear methods as well as multiderivative methods, such as Obreshkov
methods. The classical barriers due to Ehle, Daniel–Moore and Dahlquist
(second barrier) all fit into a common pattern and these are explored in a
general setting.
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1. Introduction

The history of numerical methods for initial value problems up to 1965 was
the history of Runge–Kutta methods and linear multistep methods. These
seem to have been completely separate developments with the only meeting
point being the existence of several low-order methods which simultaneously
lie in each of the special classes.

Against this background, it must be asked why a more general type of
method should be considered at all. Two reasons are proposed. First,
the general linear method formulation is often the most natural framework
for analysing the properties, even of traditional methods. Secondly, it is
possible that new and potentially superior methods will arise, which could
not possibly have been found as developments based on classical methods.

In this introductory section we will review the traditional methods, Euler,
linear multistep and Runge–Kutta. Following this section, we will discuss
some of the motivations for looking towards a more general type of method.
In Section 3, we will consider the formulation of general linear methods and
this is followed by a consideration of the meaning and significance of the
order of a method. In the short Section 5 we will review the theories of
linear and non-linear stability; a theme for this section is that the general
linear method formulation is, for many questions, the most natural formu-
lation, even in the case of classical linear multistep methods. The following
two sections deal with some known new classes of methods, with a special
emphasis on methods possessing the inherent Runge–Kutta stability (IRKS)
structure. Finally, in Section 8, we study the interrelation between order
and stability in the context of multivalue-multistage stability functions.

The bibliography is intended to be wider than references to the publica-
tions actually cited in this paper. There is no claim that it includes all work
relevant to the development of general linear methods, but it is a start in
this direction.
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1.1. Initial value problems

The standard initial value problem is written in the form

y′(x) = f
(
x, y(x)

)
, y(x0) = y0,

where f : R×R
N → R

N , although it will sometimes be more convenient to
use an autonomous form of this problem,

y′(x) = f
(
y(x)

)
, y(x0) = y0, (1.1)

where f : R
N → R

N . The individual components will sometimes need to
be written out in full:

y′i(x) = fi

(
y1(x), y2(x), . . . , yN (x)

)
, yi(x0) = y0i, i = 1, 2, . . . , N,

where y01, y02, . . . , y0N are the components of y0

Even though many practical problems are conveniently presented in non-
autonomous form, it is a simple matter to rewrite these problems as an
autonomous system, possibly with N increased to N + 1. For example, if

y′i(x) = fi

(
x, y1(x), y2(x), . . . , yN (x)

)
, yi(x0) = y0i, i = 1, 2, . . . , N,

then an equivalent autonomous system would be

y′i(x) = f i

(
y0(x), y1(x), . . . , yN (x)

)
, yi(x0) = y0i, i = 0, 1, 2, . . . , N,

where

f0

(
y0(x), y1(x), . . . , yN (x)

)
= 1,

f i

(
y0(x), y1(x), . . . , yN (x)

)
= fi

(
y0(x), y1(x), . . . , yN (x)

)
,

y0i =

{
x0, i = 0,
y0i, i = 1, 2, . . . , N.

The autonomous form has significant advantages in that the theory of
Runge–Kutta methods is much simpler with this formulation.

It is often convenient to consider an integrated form of the basic initial
value problem, that is,

y(x) = y0 +

∫ x

x0

f(x, y(x)) dx,

so that the process of numerical solution consists in approximating the in-
tegral appearing in this formulation.

1.2. The Euler method

If an approximation to the solution to an initial value problem is known at
x = xn−1, then the solution at xn = xn−1 + h can be written as

y(xn) = y(xn−1) +

∫ xn

xn−1

f(x, y(x)) dx, (1.2)
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Figure 1.1. Euler method with various step-sizes and exact solution ( ).

where y(x) is the trajectory defined by the initial data y(xn−1) = yn−1.
Approximate the integral by the left Riemann sum

∫ b

a

φ(x) dx ≈ (b − a)φ(a), (1.3)

and we have the approximation

y(xn) ≈ yn−1 + hf(xn−1, yn−1).

Hence we obtain the basic form of the Euler method,

yn = yn−1 + hf(xn−1, yn−1).

Because of its simplicity, the Euler method is a suitable prototype for dis-
cussing a range of questions which can also be asked about more complicated
methods. Central to these considerations is the question as to when we can
rely on a numerical scheme to provide arbitrarily accurate approximations,
provided that sufficient computational effort is extended. This is the ques-
tion of convergence. There are aspects of stability also associated with the
Euler method which provide insights into corresponding questions for more
general methods.

Discussion of convergence

In the computation shown in Figure 1.1, the problem

y′(x) = y − 2 + 5x − 2x2, y(0) = 1,

is solved by the Euler method on the interval [0, 1] using n steps with step-
size h = 1/n, for n = 1, 2, 4, 8. It is seen that the approximations for y(1)
become steadily more accurate as n increases. This phenomenon is known as
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‘convergence’ and is a necessary property for a numerical method to possess
if it is to be used in practical computation. The precise definition and
criteria for convergence is best subsumed under the corresponding theory for
linear multistep methods which will be informally discussed in Section 1.4.
In keeping with the intentions of this paper, we will in turn regard the
linear multistep convergence theory as included in the general linear method
formulation in Section 3.1.

The implicit Euler method

If instead of the left Riemann sum approximation (1.3) to (1.2), we use the
right Riemann sum, ∫ b

a

φ(x) dx ≈ (b − a)φ(b),

we arrive at the numerical method

yn = yn−1 + hf(xn, yn).

This is implicit because yn is not given by an explicit formula but is defined
as the solution to this algebraic equation.

1.3. Stability of the Euler and implicit Euler methods

The justification for linear stability analysis is argued along the following
lines. Consider an autonomous differential equation system

y′(x) = f(y(x)), (1.4)

and ask how the introduction of a perturbation into the solution carries
through to later times. This perturbation may be thought of as the result
of computational errors caused by the inaccuracy of a numerical method,
or simply as an imprecision in the initial data for the problem. Suppose the
perturbation is expressed as a function η(x) and that we can assume that
η takes on sufficiently small values for the approximation

f(y(x) + η(x)) ≈ f(y(x)) + f ′(y(x))η(x)

to be realistic. If y(x) + η(x) is supposed to satisfy the original differen-
tial equation system (1.4), then the development of η(x) as time passes is
approximately as the solution to the problem

η′(x) = f ′(y(x))η(x).

If the Jacobian matrix f ′(y(x)) has an eigenvalue q, assumed to be approxi-
mately constant over a (possibly small) range of x values, then we are faced
with the need to consider the linear differential equation

Y ′(x) = qY (x), (1.5)

as representing some aspect of the behaviour of the perturbation.
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Figure 1.2. Stability regions of Euler and implicit Euler methods.

A differential equation in which q can be large, with negative real part,
based on a time-scale that might seem appropriate to the numerical mod-
elling of (1.4) may cause serious difficulties, and is described as ‘stiff’. The
exact solution of (1.5) is a multiple of exp(qx) and dies away as x increases.
However, the result computed by the Euler method, increases in magnitude
by a factor |1 + hq| in each time-step. Write z = hq and refer to 1 + z as
the stability function for the Euler method. The value of h that will permit
stable computations to be carried out by the Euler method must be such
that |1 + z| ≤ 1. On the other hand, if it is somehow possible to compute
a sequence of numerical approximations using the implicit Euler method, a
similar analysis leads to the formula (1− z)−1 for the stability function and
the set of points satisfying |1 − z| ≥ 1 for the stability region.

The stability regions for the Euler and implicit Euler methods are shown
in Figure 1.2. From this figure, we see that solving stiff problems is likely
to be more successful with the implicit Euler than with the Euler method
itself. Generalizations of these methods will need to take this phenomenon
into account.

A method, such as the implicit Euler method, for which the stability
region includes the left half-plane is said to be ‘A-stable’. We will return to
this concept in the context of Runge–Kutta, linear multistep and, of course,
general linear methods.

Because of its good stability properties in handling linear stiff problems,
it might be possible to ask how the implicit Euler methods might be ex-
pected to cope with non-linear stiff problems. We consider a test problem
introduced in Dahlquist (1976) in his study of linear multistep methods. In
this model problem the function f(x, y) is assumed to satisfy the constraint

〈u − v, f(x, u) − f(x, v)〉 ≤ 0, x ∈ R, u, v ∈ R
N .
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The significance of this assumption is that two particular solutions, y and
ŷ, cannot drift apart, because

d

dx
‖y(x) − ŷ(x)‖2 = 2〈y(x) − ŷ(x), f(x, y(x)) − f(x, ŷ(x))〉 ≤ 0.

A corresponding property for two numerical approximations yn and ŷn

would be that

‖yn − ŷn‖2 ≤ ‖yn−1 − ŷn−1‖2,

and this is actually the case for the implicit Euler method because

‖yn − ŷn‖2 − ‖yn−1 − ŷn−1‖2+‖(yn − ŷn) − (yn−1 − ŷn−1)‖2

= 2〈yn − ŷn, (yn − ŷn) − (yn−1 − ŷn−1)〉
= 2〈yn − ŷn, hf(xn, yn) − hf(xn, ŷn)〉
≤ 0.

This model problem is the basis for separate studies of non-linear stability
for Runge–Kutta methods, as well as for linear multistep methods. We will
return to this question in Section 5, but in the more comprehensive context
of general linear methods.

1.4. Linear multistep methods

Given existing approximations yi ≈ y(xn−i), fi ≈ y′(xn−i), i = 1, 2, . . . , k,
a linear k-step method is an algorithm for computing yn and fn so that
fn = f(xn, yn) and

k∑

i=0

αiyn−i = h
k∑

i=0

βifn−i. (1.6)

In this formulation, α0 	= 0, because we will want to compute the new
approximation value yn from (1.6). It is possible to rescale by multiplying
(1.6) by an arbitrary nonzero factor, so that we could always assume for
convenience that α0 = 1. However, different normalizations often lead to
simplifications and we will keep the scaling of α0 open.

Introduction of characteristic polynomials

Following the fundamental ideas of Dahlquist (1956), we introduce poly-
nomials

ρ(w) =

k∑

i=0

αiw
k−i, (1.7)

σ(w) =
k∑

i=0

βiw
k−i. (1.8)
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It is customary to identify the polynomial pair (ρ, σ) with the linear multi-
step method it represents. The polynomials ρ and σ will be assumed to have
no common polynomial factor because if ρ = φρ̂ and σ = φσ̂, where φ has
nonzero degree k − k̂, then numerical results computed using (ρ̂, σ̂) would
also satisfy results computed using (ρ, σ). In particular we can assume that
αk and βk are not both zero.

Consistency, stability and convergence

A linear multistep method (ρ, σ) is said to be consistent if

ρ(1) = 0, (1.9)

ρ′(1) = σ(1). (1.10)

The significance of these assumptions is that for a consistent method, the
method is able to solve any problem of the form y′(x) = 1 exactly over a
single step, assuming that exact values of previous step values are used.

The method (ρ, σ) is said to be stable if ρ has all its zeros in the closed
unit disc and repeated zeros are in the open unit disc. The significance
of this assumption is that the method can not only solve problems of the
form y′(x) = 0 exactly over many steps but it can do so even with slightly
perturbed initial data. This leads to a main theorem in Dahlquist (1956)
which relates convergence of a method to the method being both consistent
and stable. A precise definition of convergence and further details can be
found in standard textbooks. We will return to these ideas again, in the
context of general linear methods, in Section 3.1.

Order of methods

A method has order p if it is capable of solving any differential equation
exactly if its solution is a polynomial of degree not exceeding p. Put another
way, this means that if the expression

k∑

i=0

αiyn−i − h
k∑

i=0

βifn−i

is evaluated, with all y and f values replaced by the quantities they are
supposed to approximate, then its formal Taylor series vanishes up to and
including terms in hp. Evaluate this series, expanding about xn−k, and we
obtain an expression of the form

k∑

i=0

αiy(xn−i) − h
k∑

i=0

βiy
′(xn−i) =

∞∑

i=0

Cih
iy(i)(xn−k). (1.11)
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From the known Taylor expansions of y(xn−i) and y′(xn−i) we find the
following formulae for C0, C1, . . . :

C0 =
k∑

j=0

αj , (1.12)

C1 =
k−1∑

j=0

(k − j)αj −
k∑

j=0

βj (1.13)

Ci =
1

i!

(
k−1∑

j=0

(k − j)iαj − i
k−1∑

j=0

(k − j)i−1βj

)
, i = 2, 3, . . . . (1.14)

Evaluate (1.11) for the special case y(x) = exp(z(x − xn−k)/h) (so that
y′(x) = (z/h) exp(z(x−xn−k)/h)), where z is an arbitrary complex number,
and we find

k∑

i=0

αi exp((k − i)z) − z

k∑

i=0

βi exp((k − i)z) = C0 + C1z + C2z
2 + · · · ,

so that

ρ(exp(z)) − zσ(exp(z)) = C0 + C1z + C2z
2 + · · · .

This enables us to state a convenient criterion for order.

Theorem 1.1. A linear multistep method (ρ, σ) has order p if and only if

ρ(exp(z)) − zσ(exp(z)) = O(zp+1). (1.15)

By substituting log(1 + z) = z − 1
2z2 + 1

3z3 − · · · for z in (1.15) and
rearranging we find

1

log(1 + z)
ρ(1 + z) − σ(1 + z) = O(zp),

where, because of consistency, ρ(1 + z) is a multiple of z. Hence, we have
the following result.

Corollary 1.2. A linear multistep method (ρ, σ) has order p if and only if

1

log(1 + z)/z

ρ(1 + z)

z
− σ(1 + z) = O(zp). (1.16)

Adams and BDF methods

By writing ρ(z) = zk−zk−1 and defining σ to be the degree k−1 polynomial
satisfying (1.16), with p = k, Adams–Bashforth methods are derived. By
increasing the degree of σ to k and p to k + 1, Adams–Moulton methods
are found.
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Table 1.1. Adams methods.

Adams–Bashforth Adams–Moulton
k β1 β2 β3 β4 β0 β1 β2 β3 β4

1 1 1
2

1
2

2 3
2 − 1

2
5
12

2
3 − 1

12

3 23
12 − 4

3
5
12

3
8

19
24 − 5

24
1
24

4 55
24 − 59

24
37
24 − 3

8
251
720

323
360 − 11

30
53
360 − 19

720

Table 1.2. BDF methods.

k β0 α1 α2 α3 α4

1 1 1

2 2
3

4
3 − 1

3

3 6
11

18
11 − 9

11
2
11

4 12
25

48
25 − 36

25
16
25 − 3

25

The series for z/ log(1 + z), occurring in (1.16) is

z

log(1 + z)
=

1+ 1
2z− 1

12z2 + 1
24z3 − 19

720z4 + 3
160z5 − 863

60480z6 + 275
24192z7 − 33953

3628800z8 + · · · ,

and we readily find the first few Adams–Bashforth (order k) and Adams–
Moulton (order k + 1) methods as shown in Table 1.1. In this table the
values of β0 (for the AM method only), β1, β2, . . . , βk, are given, assuming
the scaling α0 = −α1 = 1.

The ‘backward difference formulae’ (BDF) are approximations to the
derivative of y(x) at xn in terms of the values of y(xn−i), i = 0, 1, . . . , k.
The corresponding linear multistep methods are referred to as BDF meth-
ods. To derive such methods of order p = k, write σ(z) = zk, and find ρ of
degree k from

ρ(1 + z) = log(1 + z)(1 + z)k + O(zp+1).

For the first few BDF methods, the coefficients are shown in Table 1.2,
scaled so that α0 = 1.
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Stability regions and A-stability

For a linear differential equation y′ = qy, the difference equation (1.6) sim-
plifies to

k∑

i=0

(αi − zβi)yn−i = 0,

where here z = hq. The stability region is the set of points in the com-
plex plane for which this difference equation has only bounded solution
sequences. This means that, for z in the stability region,

ρ(w) − zσ(w),

regarded as a polynomial in w, has all its zeros in the closed unit disc and has
all repeated zeros in the interior. Generalizing the discussion in Section 1.3,
we will refer to a method as being A-stable if the stability region includes
the left half-plane.

Dahlquist barriers

The barriers of Dahlquist (1956, 1963) state fundamental limitations on
achievable order for linear multistep methods which satisfy various stability
properties. The second barrier is concerned with A-stability and we will
discuss this in Section 8. The first barrier is stated in the following result.

Theorem 1.3. The order p of a stable k-step method is bounded by

p ≤
{

k + 1, k odd,
k + 2, k even.

Proof. Substitute log(1+z
1−z

) for z in (1.15), to obtain

ρ

(
1 + z

1 − z

)
− log

(
1 + z

1 − z

)
σ

(
1 + z

1 − z

)
= O(zp+1), (1.17)

Let

r(z) = (1 − z)kρ

(
1 + z

1 − z

)
=

k∑

i=0

aiz
i, (1.18)

s(z) = (1 − z)kσ

(
1 + z

1 − z

)
=

k∑

i=0

biz
i. (1.19)

If z0 is a zero of r, then ρ((1 + z0)/(1 − z0)) = 0. Hence, (1 + z0)/(1 − z0)
is in the closed unit disc, implying that z0 is in the closed left half-plane.
Because 1 is a zero of ρ, 0 is a zero of r and hence, a0 = 0. However, because
1 is not a repeated zero of ρ, 0 is not a repeated zero of r. Hence, a1 	= 0.
Without loss of generality, assume that a1 > 0. Because all zeros of r are
in the left half-plane, and because these are all real or exist in conjugate
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pairs, r is a constant multiplied by products of the form z +α, where α ≥ 0,
or of the form z2 + αz + β, where α and β are each nonnegative. Hence,
no two coefficients in r can have opposite signs and therefore ai ≥ 0, for
i = 1, 2, . . . , k.

Multiply (1.17) by (1 − z)k and divide by log(1+z
1−z

) and we find

(c0 + c2z
2 + c4z

4 + · · · )(a1 + a2z + · · · + akz
k−1)

= b0 + b1z + · · · + bkz
k + O(zp), (1.20)

where (
c0 + c2z

2 + c4z
4 + · · ·

)(
1
z

log
(

1+z
1−z

))
= 1. (1.21)

From the known Taylor series for log(1+z
1−z

), we see that c0 = 1
2 and c2 = −1

6 .

We now prove by induction that c2n < 0 for n ≥ 1. From the z2n and z2n−2

terms in the expansion of (1.21), we find

c2n +
1

3
c2n−2 + · · · + 1

2n + 1
c0 = 0, (1.22)

c2n +
1

3
c2n−4 + · · · + 1

2n − 1
c0 = 0. (1.23)

Multiply (1.22) by 2n+1, subtract the result of multiplying (1.23) by 2n−1,
and rearrange to find c2n as a positive linear combination of c2, . . . , c2n−2,
completing the proof that c2n < 0 for all positive n.

We now need to prove that an order p > k+1 is impossible for k odd. If it
were possible, then the coefficient of zk+1 in (1.20) would be zero. However,
this equals

akc2 + ak−2c4 + · · · + a1ck+1,

which cannot be zero unless all the terms are zero; but this would imply
a1 = 0, which is impossible. If k is even and p > k + 2, then the coefficient
of zk+2 in (1.20) would be zero. This implies

ak−1c4 + ak−3c6 + · · · + a1ck+2 = 0,

which again would lead to the impossible conclusion that a1 = 0.

1.5. Runge–Kutta methods

Formulation of methods

The well-known methods of Runge (1895), Heun (1900) and Kutta (1901),
generalize the classical Euler method by allowing for additional functional
evaluations in each time-step. Write Y1, Y2, . . . , Ys for the arguments of
these evaluations, and F1, F2, . . . , Fs for the corresponding derivative ap-
proximations. For explicit methods, as in the cited works, each Yi is a
linear combination of the hFj values, for j < i added on to the input
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approximation, which we will write as yn−1 for step number n. Once the
s stages and corresponding derivative approximations have been computed,
the output value for the step is computed as a further linear combination
of the hFi values, for i = 1, 2, . . . , s.

Putting all this together we formulate the method as

Yi = yn−1 + h
∑

j<i

aijFj , Fi = f(Yi), i = 1, 2, . . . , s, (1.24)

yn = yn−1 + h
s∑

i=1

biFi, (1.25)

where the numbers aij , bi are characteristic of a specific method.
Because we will also want to consider ‘implicit’ methods in which the

sums in (1.24) extend beyond j < i, we will conventionally introduce a
full matrix of aij coefficients where, for the explicit case we have so far
considered, aij = 0 if j ≥ i.

This formulation is for an autonomous problem. In the case of a non-
autonomous problem, we need to take account of the point within the step
to which each stage corresponds. Suppose that stage number i evaluates an
approximation at xn−1+hci. By considering the simple differential equation
y′ = 1 we can evaluate ci as the sum of the elements in row number i of the
aij table of coefficients. That is,

ci =
s∑

j=i

aij . (1.26)

The modification to (1.24) and (1.25) to handle the non-autonomous case is

Yi = yn−1 + h
∑

j<i

aijFj , Fi = f(xn−1 + hci, Yi), i = 1, 2, . . . , s, (1.27)

yn = yn−1 + h
s∑

i=1

biFi. (1.28)

It is customary to write the collection of coefficients aij , bi and ci in a
tableau thus:

0
c2 a21

c3 a31 a32
...

...
...

. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

,

where we note that c1 = 0 and that we have omitted those elements of the
aij array which are necessarily zero.
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Sometimes we will need to introduce the full matrix of coefficients and
we denote this by A. The two vectors bT and c are also introduced. Later
we will need to consider implicit methods and in this case A will be a full
matrix. Using these notations, the tableau of coefficients will be written as

c A

bT
.

Order conditions

Order p linear multistep methods are constructed using approximations to
y(xn) in terms of y evaluated at xn−i, i = 1, 2, . . . , k and hy′ evaluated
at xn−i, i = 0, 1, . . . , k. To achieve the required order, the approximation
must be exactly satisfied whenever y is a polynomial of degree less than
p. If the values on which the approximations are based are themselves
approximations found in previous steps, we can still interpret the current
approximation as having order p, because the total error in y(xn) is made
up from the truncation error in this approximation, together with inherited
errors, all of which can be estimated in terms of O(hp+1).

For Runge–Kutta methods, the situation is more complicated because
even though the approximation (1.28) is based on the integral

y(xn) = y(xn−1)+h

∫ 1

0
y′(xn−1 +hξ) dξ ≈ y(xn−1)+h

s∑

i=1

biy
′(xn−1 +hci),

the values of Fi are not accurate approximations to y′(xn−1 + hci), i =
1, 2, . . . , s.

We deal with this complication by carrying out three steps. First we
find the Taylor expansion of the exact solution; secondly we find the Taylor
expansion for the approximation computed using a Runge–Kutta method.
Finally, by comparing these two Taylor expansions term by term, we arrive
at conditions for the difference between them to equal O(hp+1).

To commence the first step of finding the formal Taylor expansion of y
satisfying (1.1), we need formulae for the second, third, . . . , derivatives for
this function:

y′(x) = f(y(x)),

y′′(x) = f ′(y(x))y′(x)

= f ′(y(x))f(y(x)),

y′′′(x) = f ′′(y(x))(f(y(x)), y′(x)) + f ′(y(x))f ′(y(x))y′(x)

= f ′′(y(x))(f(y(x)), f(y(x))) + f ′(y(x))f ′(y(x))f(y(x)).

This sequence of expressions becomes increasingly complicated as we eval-
uate higher derivatives and we look for a systematic pattern.
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Table 1.3. Tree-like structure of terms appearing in derivative formulae.

y′(x) = f f

y′′(x) = f′f f′
f

y′′′(x) = f′′(f, f) f′′
f f

+ f′f′f f′
f′
f

Write f = f(y(x)), f′ = f ′(y(x)), f′′ = f ′′(y(x)), . . . and consider Table 1.3
where the expressions for y′ and y′′ and the two terms occurring in y′′′ are
shown together with their tree-like structures.

Motivated by this structure, we introduce the set of all rooted trees and
the corresponding derivative terms.

Trees and elementary differentials

Let T denote the set of rooted trees:

T =

{
, , , , , , , , . . .

}
. (1.29)

It is convenient to introduce some notation, including a tree-building struc-
ture. We will usually omit ‘rooted’ and refer only to trees.

The tree will be denoted by τ . Given trees t1, t2, . . . , tm we consider the
tree formed by joining the roots of each of these trees to a new root. This
will be written as [t1t2 . . . tm]. Furthermore the notation will be made more
compact by denoting repeated trees within [·] using exponents. Repeated
use of the [·] operation will be denoted using subscripts.

For example the first 8 trees in the sequence, listed in (1.29) are written
in terms of this new notation as follows:

T =
{
τ, [τ ], [τ2], [2τ ]2, [τ

3], [τ [τ ]], [2τ
2]2, [3τ ]3, . . .

}
.

Trees of the form [τn] are sometimes referred to as ‘bushy trees’ and trees
of the form [nτ ]n as tall trees.

We can now define the elementary differentials.

Definition 1.4. The elementary differential associated with the tree t, the
function f and the evaluation point y0 is defined by

F (τ)(y0) = f(y0),

F ([t1, t2, . . . , tm])(y0) = f (m)(y0)(F (t1)(y0), F (t2)(y0), . . . , F (tm)(y0)).
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Table 1.4. Some functions on trees and an example.

Function Name (and meaning) Example Construction

r(t) order of t (number of vertices) 7 7

65

1 2 43

σ(t)
symmetry of t
(order of automorphism group)

8

γ(t) density of t 63 7

33

1 1 11

α(t)
(number of ways of labelling t
with an ordered set)

10 r(t)!
σ(t)γ(t)

β(t)
(number of ways of labelling t
with an unordered set)

630 r(t)!
σ(t)

F (t)(y0) elementary differential f′′
(
f′′(f, f), f′′(f, f)

)
f
′′

f
′′

f
′′

f f ff

Φ(t) elementary weight
s∑

i,j,k=1

biaijc
2
jaikc2

k i

kj

Functions on trees

The various functions we will need are summarized in Table 1.4, with a more
detailed explanation available in Butcher (2003). In Table 1.4, t denotes a
typical tree. Also given are examples of these functions based on the tree
t = , which, in terms of the notation we have introduced, can also be
written as [[τ2]2].

The function Φ(t) will be explained below. The remaining functions are
easy to compute up to order 4 trees and are shown in Table 1.5.

Taylor expansions and order conditions

The formal Taylor expansion of the solution at x0 + h is

y(x0 + h) = y0 +
∑

t∈T

α(t)hr(t)

r(t)!
F (t)(y0).

Using the known formula for α(t), we can write this as

y(x0 + h) = y0 +
∑

t∈T

hr(t)

σ(t)γ(t)
F (t)(y0). (1.30)

Our aim will now be to find a corresponding formula for the result computed
by one step of a Runge–Kutta method. By comparing these formulae term
by term, we will obtain conditions for a specific order of accuracy.
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Table 1.5. Various functions on trees.

t r(t) σ(t) γ(t) α(t) β(t) F (t) Φ(t)

1 1 1 1 1 f
∑

bi

2 1 2 1 2 f′f
∑

bici

3 2 3 1 3 f′′(f, f)
∑

bic
2
i

3 1 6 1 6 f′f′f
∑

biaijcj

4 6 4 1 4 f(3)(f, f, f)
∑

bic
3
i

4 1 8 3 24 f′′(f, f′f)
∑

biciaijcj

4 2 12 1 12 f′f′′(f, f)
∑

biaijc
2
j

4 1 24 1 24 f′f′f′f
∑

biaijajkck

We need to evaluate various expressions, known as ‘elementary weights’,
which depend on the tableau for a particular method. First we use the
example tree we have already considered to illustrate the construction of
the elementary weight Φ(t) for this tree t:

t =
i

kj

l m on

The elementary weight for this tree is

Φ(t) =
s∑

i,j,k,l,m,n,o=1

biaijaikajlajmaknako,

which can be simplified by summing over l, m, n, o and using (1.26):

Φ(t) =
s∑

i,j,k=1

biaijc
2
jaikc

2
k.

It is now possible to write down the formal Taylor expansion of the solution
at x0 + h in the form

y1 = y0 +
∑

t∈T

β(t)hr(t)

r(t)!
Φ(t)F (t)(y0).

Using the known formula for β(t), this can be re-written as

y1 = y0 +
∑

t∈T

hr(t)

σ(t)
Φ(t)F (t)(y0). (1.31)
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If the Taylor series (1.31) is to match the Taylor series (1.30), up to hp

terms, we need to ensure that

Φ(t) =
1

γ(t)
,

for all trees such that

r(t) ≤ p.

These are the ‘order conditions’.

Low-order explicit methods

We will attempt to construct methods of order p = s with s stages for
s = 1, 2, . . . . We will find that this is possible up to order 4 but not for
p ≥ 5. The usual approach will be to first choose c2, c3, . . . , cs and then
solve for b1, b2, . . . , bs. After this solve for those of the aij which can be
found as solutions to linear equations.

Order 2. The order conditions are

b1 + b2 = 1,

b2c2 = 1
2 ,

with solution, for arbitrary nonzero c2,

0
c2 c2

1 − 1
2c2

1
2c2

.

Choose c2 = 1
2 and c2 = 1, respectively, and we obtain the two well-known

special cases

0
1
2

1
2

0 1

,

0
1 1

1
2

1
2

.

Order 3. The order conditions are

b1 + b2 + b3 = 1,

b2c2 + b3c3 = 1
2 ,

b2c
2
2 + b3c

2
3 = 1

3 ,

b3a32c2 = 1
6 .
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Three representative special cases are

0
1
2

1
2

1 −1 2

1
6

2
3

1
6

,

0
2
3

2
3

2
3 0 2

3

1
4

3
8

3
8

,

0
2
3

2
3

0 −1 1

0 3
4

1
4

.

Order 4. The order conditions are

b1 + b2 + b3 + b4 = 1, (1.32)

b2c2 + b3c3 + b4c4 = 1
2 , (1.33)

b2c
2
2 + b3c

2
3 + b4c

2
4 = 1

3 , (1.34)

b3a32c2 + b4a42c2 + b4a43c3 = 1
6 , (1.35)

b2c
3
2 + b3c

3
3 + b4c

3
4 = 1

4 , (1.36)

b3c3a32c2 + b4c4a42c2 + b4c4a43c3 = 1
8 , (1.37)

b3a32c
2
2 + b4a42c

2
2 + b4a43c

2
3 = 1

12 , (1.38)

b4a43a32c2 = 1
24 . (1.39)

To solve these equations, treat c2, c3, c4 as parameters, and solve for
b1, b2, b3, b4 from (1.32), (1.33), (1.34), (1.36). Now solve for a32, a42, a43

from (1.35), (1.37) and (1.38). Finally, use (1.39) to obtain a consistency
condition on c2, c3, c4. This consistency condition is found to be c4 = 1.

We will prove a stronger result in another way.

Theorem 1.5. If an explicit Runge–Kutta method with s = 4 has order 4,
then

s∑

i=j+1

biaij = bj(1 − cj), j = 1, 2, 3, 4

and, in particular, c4 = 1.

Proof. The result c4 = 1 is proved in Lemma 1.6 below. Hence, v4 = 0,
where vj =

∑s
i=j+1 biaij − bj(1 − cj), j = 1, 2, 3, 4. Also v3 = 0 because∑

j,k vjajkck = 0, which we find by expanding and using the order condi-

tions. Finally,
∑

j vjcj = 0, implying v2 = 0, and
∑

j vj = 0, implying
v1 = 0.

Lemma 1.6. If an explicit Runge–Kutta method has order p where s =
p ≥ 4, then c4 = 1.
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Proof. Consider the matrix formed as the result of the product

[
1 0 0
0 1 −c4

]


bT Ap−3

bT Ap−4C
bT Ap−4


 [

Ac Cc c
]



1 0
0 1
0 −c2


.

This matrix has rank one because bT Ap−3 and bT Ap−4C−c4b
T Ap−4 are each

zero except for components number 1, 2, 3 and because Ac and Cc− c2c are
each zero in components 1, 2. Hence, multiplying the middle two factors,
we see that the product can be written as

[
1 0 0
0 1 −c4

]


bT Ap−2c bT Ap−3Cc bT Ap−3c
bT Ap−4CAc bT Ap−4C2c bT Ap−4Cc

bT Ap−3c bT Ap−4Cc bT Ap−4c






1 0
0 1
0 −c2


.

Evaluate the second factor by the order conditions and we obtain the result

[
1 0 0
0 1 −c4

]



1
p!

2
p!

p
p!

3
p!

6
p!

2p
p!

p
p!

2p
p!

p(p−1)
p!







1 0
0 1
0 −c2




=
1

p!

[
1 2 − pc2

3 − pc4 6 − 2pc2 − 2pc4 + p(p − 1)c2c4

]
.

Because this matrix has rank not exceeding 1, its determinant is zero. This
gives the result c2(1−c4) = 0. The possibility that c2 = 0 has to be rejected
because this would lead to the contradiction

0 = bT Ap−2c =
1

p!
.

Hence, for any Runge–Kutta method with s = p ≥ 4, c4 necessarily equals 1.

As a result of Theorem 1.5, the construction of fourth-order Runge–Kutta
methods now becomes straightforward. Kutta (1901) classified all solutions
to the fourth-order conditions.

In particular, we have the famous method:

0
1
2

1
2

1
2 0 1

2

1 0 0 1

1
6

1
3

1
3

1
6

.

An order barrier

We will review what is achievable up to order 8. In Table 1.6, Np is the
number of order conditions to achieve this order. Ms = s(s + 1)/2 is the
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Table 1.6. Minimum number of stages s to achieve order p.

p Np s Ms

1 1 1 1
2 2 2 3
3 4 3 6
4 8 4 10
5 17 6 21
6 37 7 28
7 115 9 45
8 200 11 66

number of free parameters to satisfy the order conditions for the required
s stages.

According to Table 1.6, it is suggested that, for p ≥ 5, it is necessary that
s > p. We will now prove this result.

Theorem 1.7. There does not exist an explicit Runge–Kutta method
with order p = s ≥ 5.

Proof. Recall from Lemma 1.6 that c4 = 1. If s = p ≥ 5, repeat the
argument but starting from the product

[
1 0 0
0 1 −c5

]


bT Ap−4

bT Ap−5C
bT Ap−5


 [

A2c ACc Ac
]



1 0
0 1
0 −c2




and we now find that c5 = 1. If s = p ≥ 5 and c4 = c5 = 1, we obtain the
contradiction

0 = bT Ap−5(I − C)A2c =
1

p!
.

1.6. Algebraic theory and B-series

We will review work first presented in Butcher (1972a); it has since become
known under the name B-series (Hairer and Wanner 1974). A more recent
account is given in Butcher (2003).

As a first step, make a slight generalization to the formulation of Runge–
Kutta methods, by inserting a factor b0 in the term yn−1 in (1.25). In such a
generalized Runge–Kutta method, the extra coefficient can be conveniently
inserted into its tableau:

c A

b0 bT
. (1.40)
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We will conventionally add an additional ‘empty tree’, denoted by ∅, to the
set of rooted trees to form the augmented set

T# = T ∪ {∅}.

For the generalized Runge–Kutta tableau (1.40), define the corresponding
elementary weight as

Φ(∅) = b0,

so that, for a standard Runge–Kutta method, Φ(∅) = 1.
We will denote by X the set of mappings T# → R and by X1 the subset

for which ∅ �→ 1. Thus, to each Runge–Kutta method, we can associate a
member of X1, such that t �→ Φ(t).

The order conditions can be written in terms of elementary weights, and it
is natural to ask in what sense the elementary weights characterize a Runge–
Kutta method. The answer is that if two Runge–Kutta methods have the
same sequence of elementary weights, then they are equivalent methods
in a very natural sense. For example, if two methods are equivalent then
they give the same numerical result when applied to the same problem.
Furthermore they are equivalent also in the sense that if unused stages are
eliminated and sets of stages which give identical results are collapsed into
a single stage, then the two methods have equivalent tableaux, except for
the ordering of the stages. For a more detailed explanation of equivalences
amongst Runge–Kutta methods, see, for example, Butcher (1996b).

Given that we can represent equivalence classes of Runge–Kutta meth-
ods using the sequence of elementary weights, we might ask: What is the
significance of the right-hand sides of the order conditions? We will give
an interpretation of these quantities in terms of a limiting type of Runge–
Kutta method which can be thought of as having arbitrarily high order. For
convenience we will consider a step of size h starting from y(x0) = y0.

The exact solution at the end of this step, and at points within the step,
is given by the Picard integral equation

y(x0 + hξ) = y0 + h

∫ ξ

0
f(y(x0 + hη)) dη.

We can regard this as an idealized Runge–Kutta method in which the fi-
nite index set for the stages, {1, 2, . . . , s}, is replaced by an interval [0, 1].
This means that for any ξ ∈ [0, 1], we can associate a ‘stage value’, Yξ =
y(x0 + hξ), with corresponding stage derivative f(Yξ). In this limiting in-
terpretation, the matrix A : R

s → R
s is replaced by a linear operator on

the set of continuous functions on [0, 1]. At the same time, the vector bT , is
replaced by a linear functional on the continuous functions on [0, 1]. More
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specifically, the idealized A and bT are given by

(Aφ)ξ =

∫ ξ

0
φη dη, (bT φ) =

∫ 1

0
φη dη = (Aφ)1.

The elementary weights for this idealized method are found from the
formula for Φ(t) and replacing various sums by integrals. For example, for
the example tree used in Table 1.4, the calculation of the limiting elementary
weight is as follows:

∫ 1

0

(∫ x

0
x2 dx

)2

dx =

∫ 1

0

(
1
3x3

)2
dx = 1

63 = 1
γ(t) .

The representation of this method as a member of X1 will be denoted by E.
Hence, E(t) = 1/γ(t).

If we consider equivalence classes of Runge–Kutta method as basic objects
of study, then we might ask: What is the significance of the composition
of two methods, one from each class? If the two methods are denoted by
M1 and M2, with s1 and s2 stages, respectively, then M1M2 will denote
the combined operation of calculating the stages of the first method and
the output value so that it now becomes possible to write the stages of the
second method as though they were additional stages appended to the first
method. Thus M1M2 is also a Runge–Kutta method but the equivalence
class to which it belongs is independent of how the representative methods
M1 and M2 were chosen from within their classes. Furthermore we can
compute the elementary weights for the product class directly from those of
the classes containing M1 and M2.

For convenience, we will write the function on trees to elementary weights
corresponding to two specific methods as α and β. For tree number i we
will write αi = α(ti) and βi = β(ti). The value of (αβ)(ti) will be a function
of the α and β values and formulae for these are shown in Table 1.7, up
to order 4 trees. The value of β0 which appears in this table is equal to
β(∅). Restricted to X1×X1, the operation defined by this table generates a
group. However, X also has a vector space structure and left-multiplication
by a member of X1 is a linear operator on this vector space.

We now discuss an important example of the vector space structure. The
output from the Euler method, starting from initial value y(x0) = y0, gives
a result y0 +hy′(x0). Subtract y0 from this and we obtain exactly the scaled
derivative hy′(x0) = hf(y0). We will regard the elementary weights for this
scaled derivative as being exactly the same as for the Euler method, but with
β0 set equal to zero. We will denote this special generalized Runge–Kutta
method by D so that D(∅) = 0, D(τ) = 1, D(t) = 0 (r(t) > 1).

It is quite convenient to build up elementary weights, and more compli-
cated objects, using the D operation. If 1 is used to represent the identity
element of the group. We can then write the group elements representing
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Table 1.7. Runge–Kutta group operation, with β0 = 1.

i ti α(ti) β(ti) (αβ)(ti)

1 α1 β1 α1β0 + β1

2 α2 β2 α2β0 + α1β1 + β2

3 α3 β3 α3β0 + α2
1β1 + 2α1β2 + β3

4 α4 β4 α4β0 + α2β1 + α1β2 + β4

5 α5 β5 α5β0 + α3
1β1 + 3α2

1β2 + 3α1β3 + β5

6 α6 β6 α6β0 + α1α2β1 + (α2
1 + α2)β2 + α1(β3 + β4) + β6

7 α7 β7 α7β0 + α3β1 + α2
1β2 + 2α1β4 + β7

8 α8 β8 α8β0 + α4β1 + α2β2 + α1β4 + β8

the stages by ηi, i = 1, 2, . . . , s which satisfy

ηi = 1 +
s∑

j=1

aijηjD.

The output at the end of a Runge–Kutta method will then be

1 +

s∑

i=1

biηiD.

Collocation methods and implicit Runge–Kutta methods

A possible approach to the solution of an initial value problem, on an interval
[x0, x0 + h], is to assume an approximation of the form

y(x0 + ξh) = P (ξ),

and to define the polynomial P , assumed to be of degree s, by the conditions

P (0) = y0,

P ′(ci) = f(P (ci)), i = 1, 2, . . . , s.

In these conditions, the ‘collocation points’ c1, c2, . . . , cs, are distinct and
nonzero. To obtain a step-by-step sequence of approximations, define y1 =
P (1), and compute y2 in a similar way from y1, as the next step in the
process. An attraction of such methods is the fact that an interpolated
approximation is automatically available between step values.

It was pointed out in Wright (1970) that collocation methods are equiv-
alent to implicit Runge–Kutta methods, with the abscissae identical to
the collocation points. In the implicit Runge–Kutta representation, the
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elements of A and bT are defined by
∑

j=1

aijc
k−1
j =

1

k
ck
i , k = 1, 2, . . . , s, i = 1, 2, . . . s, (1.41)

∑

j=1

bjc
k−1
j =

1

k
, k = 1, 2, . . . , s. (1.42)

For example, if c = [0, 1
2 , 1]T , we obtain the method

0 0 0 0
1
2

5
24

1
3 − 1

24

1 1
6

2
3

1
6

1
6

2
3

1
6

. (1.43)

The condition (1.41) expresses the fact that not only does the output from
a step have a specific order but the stage values themselves are computed
to a high precision, as measured in terms of an asymptotic error O(hq+1).
Even for a method which is not based on collocation, the stage order, which
we denote by q, can be close to s for implicit methods. This is regarded as
an advantage in terms of the ability of the method to solve stiff problems
reliably (Prothero and Robinson 1974). The next example method has stage
order 2 and order 3:

1
3

5
12 − 1

12

1 3
4

1
4

3
4

1
4

. (1.44)

A-stable Runge–Kutta methods

As for the Euler method and linear multistep methods, the first step in
assessing the stability properties of a Runge–Kutta method is to investigate
its behaviour with the linear problem y′ = qy. For this problem, the stages
and final output in a single step are given by

Y = zAY + yn−11,

yn = zbT Y + yn−1,

where z = hq and 1 ∈ R
s has every component equal to 1. Eliminate Y and

the result is

yn = R(z)yn−1,

where the ‘stability function’ is

R(z) = 1 + zbT (I − zA)−11.

The set of z values for which |R(z)| ≤ 1 is the ‘stability region’. If this
includes the left half-plane then the method is A-stable. Two examples of
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A-stable methods can be found in (1.43) and (1.44) for which the stability
functions are

R(z) =
1 + 1

2z + 1
12z2

1 − 1
2z + 1

12z2
,

R(z) =
1 + 1

3z

1 − 2
3z + 1

12z2
,

respectively. These stability functions are examples of Padé approxima-
tions and proof of the A-stability, in these particular cases, is included in
Theorem 8.8.

Runge–Kutta methods for stiff problems

For stiff problems, it is not satisfactory to use explicit methods, and we need
to consider methods in which A has a more complicated structure. We will
consider five levels of implicitness, in terms of restrictions on the coefficients
in the s × s matrix A and the vector bT :

(i) aij = 0 if j > i,
(ii) aij = 0 if j > i; aii = λ, i = 1, 2, . . . , s,
(iii) a11 = 0; aij = 0, j > i; aii = λ, i = 2, 3, . . . , s; asj = bj , j = 1, 2, . . . , s,
(iv) σ(A) = {λ},
(v) A an arbitrary full matrix.

The use of fully implicit methods (v) was proposed by Ceschino and
Kuntzmann (1963) and Butcher (1964), with the abscissae based on Gauss–
Legendre integration points. The Gauss methods and related methods based
on other high-order quadrature formulae, have an important role in the
solution of stiff problems. In Butcher (1964) so-called semi-implicit methods
(i) were introduced but without a specific application in mind.

For efficiency reasons, there is also an interest in diagonally implicit (or
DIRK) methods included within the (ii) and (iii) families. Finally, singly
implicit (SIRK) methods (Burrage 1978a) were introduced to yield meth-
ods which not only have efficient implementation properties but have high
stage order.

The following example of (i) has order 5; this would have required 6
stages if the method had been explicit. For example, the following method
has order 5:

0
1
4

1
8

1
8

7
10 − 1

100
14
25

3
20

1 2
7 0 5

7

1
14

32
81

250
567

5
54

.
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An example of (ii) is the following order 3 method:

λ λ
1
2(1 + λ) 1

2(1 − λ) λ

1 1
4(−6λ2 + 16λ − 1) 1

4(6λ2 − 20λ + 5) λ

1
4(−6λ2 + 16λ − 1) 1

4(6λ2 − 20λ + 5) λ

,

where λ ≈ 0.4358665215 satisfies 1
6 − 3

2λ+3λ2−λ3 = 0. This method is
A-stable but its stage order is only 1, making it of limited value in the
solution of stiff problems.

The next method is an example of (iv) and has order and stage order 2:

3 − 2
√

2 5
4 − 3

4

√
2 7

4 − 5
4

√
2

1 1
4 + 1

4

√
2 3

4 − 1
4

√
2

1
4 + 1

4

√
2 3

4 − 1
4

√
2

.

The method is A-stable, as are similar methods up to order 8 (with the
exception of 7). Their major disadvantage is the fact that, for s > 2, not
all the abscissae lie in [0, 1].

It is implemented using a transformation which makes it effectively like
DIRK methods, in terms of cost, at least for large problems where the
overheads due to the transformations are relatively insignificant.

Finally, a simple example of (v). This is one of the Gauss–Legendre family
of methods and it has order 4 and stage order 2:

1
2 − 1

6

√
3 1

4
1
4 − 1

6

√
3

1
2 + 1

6

√
3 1

4 + 1
6

√
3 1

4

1
2

1
2

.

Similar methods exist for all positive values of s with order 2s and stage
order s. Although they are A-stable, they are difficult to implement
efficiently.

2. Motivations for general linear methods

We will describe some of the circumstances and events which have led to an
interest in more general methods.

The traditional methods can be regarded as generalizations, in one way or
another, of the Euler method. In the terminology of general linear methods,
this is a one-value (r = 1), one-stage (s = 1) method. Increasing the value
of the integer r leads to linear multistep methods and increasing s leads to
Runge–Kutta methods. It seems natural to consider methods in which both
r > 1 and s > 1 are possible.
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Thus the first motivation for studying general linear methods is that this
generalization is natural and there seems to be no reason for not adopting
it. Indeed even some existing methods are more naturally formulated in a
general linear method ansatz.

We will look at some of the limitations of existing methods to see that the
general linear method generalization is not only natural but also potentially
useful. We will pursue this point of view by looking at some simple mod-
ifications of existing methods and ultimately by attempting to find some
new and potentially efficient methods which do not arise naturally in any
other way.

2.1. Limitations of linear multistep methods

Even though there are 2k +1 free parameters in the specification of a linear
k-step method, so that order 2k would seem to be possible, in fact practical
methods are limited in order to k + 2 (if k is even) and k + 1 (if k is
odd), because of the stability condition. This result, Dahlquist’s first barrier
(Dahlquist 1956), which we reviewed in Theorem 1.3, is coupled with the
second Dahlquist barrier (Dahlquist 1963), which limits the order of A-
stable methods to exactly 2. A proof, using order arrows, of the second
barrier is given in Theorem 8.10. In spite of this barrier, if A(α)-stability,
with a reasonably large angle α, is regarded as acceptable, it is possible to
go to at least order 4.

This applies in particular to BDF methods where we note that BDF4 is
A(0.4π)-stable. For any p, it is possible to replace the factor 0.4 by a number
arbitrarily close to 1

2 (Widlund 1967, Grigorieff and Schroll 1978) but at the
cost of impractically high error constants (Jeltsch and Nevanlinna 1982).

In addition to stability constraints, another type of limitation is the com-
plication associated with change of step-size and change of order. Each of
these requires considerable overheads.

2.2. Limitations of Runge–Kutta methods

While explicit order p Runge–Kutta methods exist with p stages, for p =
1, 2, 3, 4, no such methods exist for p > 4. Furthermore, if the minimal
number of stages to achieve order p is s(p), then s(p)− p increases steadily
as p increases, as we recall from Table 1.6.

Variable step-size and order are made difficult by the need to estimate
local truncation errors in a reliable way. This is an increasingly expensive
requirement as the order increases.

In the case of implicit methods, the achievable order is exactly 2s, and
methods which achieve this maximum are A-stable. This seems to be a
satisfactory situation but the actual methods have two serious handicaps.
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The first of these is that they suffer from error reduction and the second is
the very high implementation cost.

Even though the global truncation error is asymptotically O(hp), for step-
sizes which often arise in practice, the error behaves more like O(hq), where
q is the stage order.

Solving the non-linear equations defining the stage values involves a pro-
cess based on the Newton method. This is much more expensive than for
implicit linear multistep methods, unless the coefficient matrix A has a spe-
cial structure, such as the DIRK structure. Unfortunately DIRK methods
necessarily have low stage order. In the opinion of this author the only
way to overcome this difficulty is to use SIRK methods, in the modified
form discussed in Butcher and Chen (1998). But there seem to be better
algorithms within the larger family of general linear methods.

2.3. Modifications of linear multistep methods

Many examples are known of modifications to standard methods, which
somehow acquire enhanced properties. For example, by adding one or more
offstep points, it is possible to give a linear multistep method a little closer
to that of Runge–Kutta methods. This can break the Dahlquist barrier by
permitting methods to have order greater than 2k and still remain stable. A
class of methods in this hybrid family takes the idea of predictor–corrector
pairs based on Adams–Bashforth and Adams–Moulton methods further,
by including a single offstep predictor as well as the usual predictor and
corrector at the end of the step. Thus for k = 2 the k-step PECE1 method,

y∗n = yn−1 + 3
2hfn−1 − 1

2hfn−2,

yn = yn−1 + 1
2hf∗

n + 1
2hfn−1,

generalizes to

y∗
n− 1

2

= yn−2 + 9
8hfn−1 + 3

8hfn−2,

y∗n = 28
5 yn−1 − 23

5 yn−2 + 32
15hf∗

n− 1

2

− 4hfn−1 − 26
15hfn−2,

yn = 32
31yn−1 − 1

31yn−2 + 5
31hf∗

n + 64
93hf∗

n− 1

2

+ 4
31hfn−1 − 1

93hfn−2.

Note that in this discussion f∗
n denotes f(xn, y∗n) and f∗

n− 1

2

denotes

f

(
xn − 1

2
h, y∗

n− 1

2

)
.

Even though the two predictors generate approximations only of order 3,
the overall result has order 5.

1 PECE denotes ‘Predict–Evaluate–Correct–Evaluate’.
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‘Hybrid’ methods, as Gear named them, were introduced in Butcher
(1965), Gear (1965) and Gragg and Stetter (1964).

A completely different generalization of linear multistep methods is that
of cyclic composite methods, first proposed by Donelson and Hansen (1971).
If we are given m linear multistep methods

yn =
k∑

i=1

α
[j]
i yn−i +

k∑

i=0

β
[j]
i hfn−i, j = 1, . . . , m,

the idea is to apply them cyclically. That is, in a sequence of m steps, use
method number 1 followed by method number 2 and so on until method
number m has been applied. For steps after this, the cycle is repeated.

We present just two examples. In the first we consider two methods, each
based on open Newton–Cotes quadrature formulae:

yn = yn−2 + 2hfn−1,

yn = yn−3 + 3
2hfn−1 + 3

2hfn−2.

Taken alone, each of these methods is ‘weakly stable’. That is, regarded for
convenience as 3-step methods, their zero stability matrices are

M1 =




0 1 0
1 0 0
0 1 0


 and M2 =




0 0 1
1 0 0
0 1 0


,

respectively. For M1 the eigenvalues are {1,−1, 0} and for M2 the eigen-
values are {1, exp(2πi/3), exp(−2πi/3)}. Weak stability is a consequence of
the existence of eigenvalues on the unit disc, in addition to the principal
eigenvalue at 1 in each case. However, when the two methods are used in
alternation then the stability matrix over the pair of steps becomes

M2M1 =




0 1 0
0 1 0
1 0 0


,

with eigenvalues {1, 0, 0}.
It is possible to go even further and to construct cycles of explicit methods

which overcome the first Dahlquist barrier. For example, consider the two
methods

yn = − 8
11yn−1 + 19

11yn−2 + 10
11hfn + 19

11hfn−1 + 8
11hfn−2 − 1

33hfn−3,

yn = 449
240yn−1 + 19

30yn−2 − 361
240yn−3 + 251

720hfn + 19
30hfn−1 − 449

240hfn−2

− 35
72hfn−3.



General linear methods 187

Each of these methods has order 5 and each is unstable, but we will see
that the corresponding cyclic method has perfect stability. To verify this
remark, analyse stability using y′ = 0:

yn = − 8
11yn−1 + 19

11yn−2, (2.1)

yn = 449
240yn−1 + 19

30yn−2 − 361
240yn−3. (2.2)

The difference equation for yn − yn−1 is
[

yn − yn−1

yn−1 − yn−2

]
= X

[
yn−1 − yn−2

yn−2 − yn−3

]
,

where X is [
−19

11 0
1 0

]

for (2.1), and
[

209
240

361
240

1 0

]

for (2.2). Neither matrix is power-bounded but their product, corresponding
to the cyclic use of the two methods, is nilpotent.

By applying the cyclic composite idea to implicit methods it is also pos-
sible to overcome the second Dahlquist barrier (Bickart and Picel 1973).

2.4. Modifications of Runge–Kutta methods

The following family of fourth-order methods is one of several such families
found by Kutta:

0

c2 c2
1
2

1
2 − 1

8c2
1

8c2

1 1
2c2

− 1 − 1
2c2

2

1
6 0 2

3
1
6

.

If we substitute c2 = −1, it is found that

0

−1 −1
1
2

5
8 −1

8

1 −3
2

1
2 2

1
6 0 2

3
1
6

.
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−2 −1−3 0

i

2i

3i

−i

−2i

−3i

re-use method

Runge–Kutta method

rescaled re-use method

Figure 2.1. Stability region for the re-use method
compared with the classical Runge–Kutta method.

We can interpret the abscissa at −1 as re-use of the derivative found at the
beginning of the previous step. We then have the method

Y1 = yn−1 + 5
8hf(yn−1) − 1

8hf(yn−2), F1 = f(Y1),

Y2 = yn−1 − 3
2hf(yn−1) + 1

2hf(yn−2) + 2hF1, F2 = f(Y2),

yn = yn−1 + 1
6hf(yn−1) + 2

3hF1 + 1
6hF2.

Like the Runge–Kutta method on which it is based, this method retains
order 4, even though it evaluates f only 3 times per time-step compared
with 4 for the original method.

We can understand something about the behaviour of the new method by
plotting its stability region. This is shown in Figure 2.1, with the classical
fourth-order method included for comparison. Because s = 3 for the re-use
method, rather than s = 4 for the Runge–Kutta method, a more appropriate
comparison is achieved by the rescaling z �→ 4

3z in the case of the re-use
method; this is also shown in the figure. Based on this comparison, there
seems to be little advantage in either the Runge–Kutta method or the re-use
method.
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As a general linear method, using a notation we will introduce in Section 3,
the re-use method has the following matrix representation:

[
A U
B V

]
=




0 0 0 1 0
5
8 0 0 1 −1

8

−3
2 2 0 1 1

2

1
6

2
3

1
6 1 0

1 0 0 0 0




. (2.3)

3. Formulations

In the formulation of general linear methods given in Butcher (1966), a

collection of approximations y
[n]
i , i = 1, 2, . . . , r, together with derivative

approximations F
[n]
i = f(y

[n]
i ) is computed at the end of step number n in

terms of the corresponding quantities available as input to the step. Making
use of three matrices of coefficients, A, B, C, which characterize a specific
method, the step n approximations are given by

y
[n]
i =

r∑

j=1

aijy
[n−1]
j +

r∑

j=1

bijhF
[n]
j +

r∑

j=1

cijhF
[n−1]
j .

This method was referred to as (A, B, C). It is easy to see, by raising the
value of r if necessary, that C can be removed from the formulation.

An equivalent, but in many ways more convenient, formulation was in-
troduced in Burrage and Butcher (1980) and this is now the standard way
of representing general linear methods.

Denote the output approximations from step number n by y
[n]
i , i =

1, 2, . . . , r, the stage values by Yi, i = 1, 2, . . . , s and the stage derivatives
by Fi, i = 1, 2, . . . , s.

For convenience, write

y[n−1] =




y
[n−1]
1

y
[n−1]
2
...

y
[n−1]
r




, y[n] =




y
[n]
1

y
[n]
2
...

y
[n]
r




, Y =




Y1

Y2

...

Ys


, F =




F1

F2

...

Fs


.

It is assumed that Y and F are related by a differential equation.
The computation of the stages and the output from step number n is
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carried out according to the formulae

Yi =
s∑

j=1

aijhFj +
r∑

j=1

uijy
[n−1]
j , i = 1, 2, . . . , s,

y
[n]
i =

s∑

j=1

bijhFj +
r∑

j=1

vijy
[n−1]
j , i = 1, 2, . . . , r,

where the matrices A = [aij ], U = [uij ], B = [bij ], V = [vij ] are character-
istic of a specific method.

We can write these relations more compactly in the form
[

Y

y[n]

]
=

[
A ⊗ I U ⊗ I
B ⊗ I V ⊗ I

] [
hF

y[n−1]

]
,

which we can simplify by making a harmless abuse of notation in the form
[

Y

y[n]

]
=

[
A U
B V

] [
hF

y[n−1]

]
. (3.1)

An alternative formulation, of the closely related A-methods, is given in
Albrecht (1985).

3.1. Consistency, stability and convergence

An idea that will be developed in Section 4 is that there is always a starting
method associated with each method. For our present purpose it is enough
to ask what quantity the numerical solution is supposed to approximate, at
least to a first-order approximation. As a very basic requirement we ask if
it is possible to approximate the solution to the problem y′(x) = 0, exactly.
This condition has two parts. First, we want to ensure that quantities input
to step number n are capable of remaining unchanged at the end of the
step. Secondly we want to be able to guarantee long-term adherence to this
solution, even if a slight perturbation is introduced. The first requirement
will be written in terms of the existence of a ‘pre-consistency vector’ u
which is unchanged when acted upon by V and the second that V is power-
bounded. Note that for the differential equation y′ = 0, input component
number i is assumed to have the form uiy(xn−1) so that V u = u is the first
of our conditions. In addition to this property of u we will require that
Uu = 1 so that each stage gives an approximation close to y(xn−1).

For a pre-consistent stable method, we also want to guarantee that the
solution of the problem y′(x) = 1 has correctly advanced one step forward.
We summarize these remarks with a series of definitions.

Definition 3.1. A general linear method (A, U, B, V ) is ‘stable’ if there
exists a constant C such that ‖V n‖ ≤ C for any positive integer n.
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Definition 3.2. A general linear method (A, U, B, V ) is ‘pre-consistent’ if
there exists a ‘pre-consistency vector’ u such that

V u = u,

Uu = 1.

Definition 3.3. A general linear method (A, U, B, V ) is consistent if it is
pre-consistent with pre-consistency vector u and furthermore, there exists
a vector v such that

B1 + V v = u + v.

Given the properties embodied in these definitions it is possible to guar-
antee that the approximation computed by a general linear method can be
found arbitrarily close to the exact solution. We express this in terms of a
definition, followed by a theorem, which will not be proved in this survey.

Definition 3.4. Consider an initial value problem

y′(x) = f(x, y(x)), y(x0) = y0,

where f : [x0, x]×R
N → R

N is continuous in its first variable and satisfies a
Lipschitz condition in its second variable. Let (A, U, B, V ) be a consistent,
stable general linear method with pre-consistency and consistency vectors
u and v. Let S(h) denote a starting approximation which depends on h in
such a way that limh→0 Si(h) = uiy0, i = 1, 2, . . . , r. Let η(n) denote the
value of y[n], computed using the given method for the given problem, with
starting value defined by y[0] = S((x − x0)/n). The method is ‘convergent’
if, for any choice of initial value problem and starting approximation S,
limn→∞ ηi(n) = uiy(x), i = 1, 2, . . . , r.

Theorem 3.5. Any stable and consistent general linear method is con-
vergent.

This result includes the theories for convergence for special methods, such
as Runge–Kutta and linear multistep methods. In practice, methods will
be designed to have a stage order equal to at least 0 and an order equal to
at least 1. Such order conditions imply consistency so the crucial question
to ask in the search for acceptable methods, is whether the method is or is
not stable.

The proof of Theorem 3.5 is technical and is given in Butcher (2003),
for example.
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3.2. Representation of standard methods

For a linear multistep method with input and output

y[n−1] =




yn−1

yn−2
...

yn−k

hf(xn−1, yn−1)
hf(xn−2, yn−2)

...
hf(xn−k, yn−k




, y[n] =




yn

yn−1
...

yn−k+1

hf(xn, yn)
hf(xn−1, yn−1)

...
hf(xn−k+1, yn−k+1




,

the single stage Y1 will be identical with the first output component, and
we have the method




β0 α1 α2 · · · αk−1 αk β1 β2 · · · βk−1 βk

β0 α1 α2 · · · αk−1 αk β1 β2 · · · βk−1 βk

0 1 0 · · · 0 0 0 0 · · · 0 0
...

...
...

...
...

...
...

...
...

0 0 0 · · · 1 0 0 0 · · · 0 0
1 0 0 · · · 0 0 0 0 · · · 0 0
0 0 0 · · · 0 1 0 0 · · · 0 0
0 0 0 · · · 0 0 1 0 · · · 0 0
...

...
...

...
...

...
...

...
...

0 0 0 · · · 0 0 0 0 · · · 1 0




. (3.2)

3.3. Transformation of methods

Because the data imported at the start of a step and exported at the end of
the step is capable of being repackaged in a different way, we consider two
methods (A, U, B, V ) and (A, Û , B̂, V̂ ), so related that

[
A Û

B̂ V̂

]
=

[
I 0
0 T−1

] [
A U
B V

] [
I 0
0 T

]
, (3.3)

where T is an arbitrary r × r non-singular matrix.
If ŷ[n] is the output from the transformed method and y[n] is the output

from the original method then

ŷ[n−1] = (T ⊗ I)y[n−1], ŷ[n] = (T−1 ⊗ I)y[n].

The relationship between the basic properties of the two methods is ex-
pressed in the following result which is proved in a routine way.
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Theorem 3.6. Let (A, U, B, V ) and (A, Û , B̂, V̂ ) be two methods related
by (3.3), then if either is consistent, then so is the other, with preconsistency
and consistency vectors related by

û = T−1u,

v̂ = T−1v.

Furthermore, if either method is stable, then so is the other.

The significance of transformations predates by many years the intro-
duction of general linear methods. In traditional formulations of Adams
methods, for example, the input data for step number n may consist of
approximations to y(xn−1), hy′(xn−1), hy′(xn−2), . . . , hy′(xn−k). On the
other hand, an alternative representation, popular in the days of hand com-
putation, is to use y(xn−1), together with backward differences, from order
0 to k − 1, of the derivative information. The use of approximations to
scaled derivatives was proposed by Nordsieck (1962) and promoted in Gear
(1967, 1971).

Given a method (A, Û , B̂, V̂ ) with r̂ input and output values, it may
happen that a method (A, U, B, V ) with r < r̂ input and output values
might be related to it by the existence of an r × r̂ matrix T , with rank r,
such that

Û = UT, T B̂ = B, T V̂ = V T.

In this case, it might be asked to what extent the method (A, U, B, V )

carries out essentially the same task as the original method (A, Û , B̂, V̂ ).
To understand this question, introduce an arbitrary (r̂ − r) × r̂ matrix Ṫ
whose rows, together with the rows of T , constitute a basis for R

br. Now
write [

y[n]

ẏ[n]

]
=

[
T ⊗ I

Ṫ ⊗ I

]
ŷ[n],

where it is assumed that the ŷ sequence satisfies the original method. Trans-
form the original ̂ method to give the method




A U 0

B V 0

Ḃ V̇ V̈


 =

[
T

Ṫ

] [
A Û

B̂ V̂

] [
T

Ṫ

]−1

.

It is apparent that the y[n] is generated by the method (A, U, B, V ), without
any reference to the the ẏ[n] sequence. Hence, the transformation of methods
can also have the effect of reducing a method to a simpler ‘reduced method’.
Assuming that A has no unused stages, we refer to a method that is not
capable of further reduction as irreducible.
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The most readily available example of a reducible method is for a linear
multistep method written in the form (3.2). Define

T =




α1 α2 · · · αk−1 αk β1 β2 · · · βk−1 βk

α2 α3 · · · αk 0 β2 β3 · · · βk 0
...

...
...

...
...

...
...

...
αk 0 · · · 0 0 βk 0 · · · 0 0


,

which has rank k because |αk| + |βk| 	= 0.
Hence, we arrive at the r input method

[
A U
B V

]
=




β0 1 0 0 · · · 0 0

β0α1 + β1 α1 1 0 · · · 0 0
β0α2 + β2 α2 0 1 · · · 0 0
β0α3 + β3 α3 0 0 · · · 0 0

...
...

...
...

...
...

β0αk−1 + βk−1 αk−1 0 0 · · · 0 1
β0αk + βk αk 0 0 · · · 0 0




. (3.4)

4. Order conditions

4.1. General definition of order

In the formulation of a general linear method, there is not always a natural
meaning that can be given to the quantities y[n] output at the end of step
number n. Hence we will introduce a ‘starting method’, to represent the
quantity we are trying to approximate. Write this as a modified type of
general linear method with only a single input but with r outputs. It can
also be thought of as a Runge–Kutta method with multiple outputs.

If the starting method is applied to a given initial value the output can
be used as input to the first step of the main method. If S denotes the
starting method and M the main method then SM will denote the com-
bined operation. Similarly, E denotes the exact solution evaluated after a
time-step h, the same as the step-size for M and S, and ES denotes the
result of applying S to the exact solution evaluated after a time h.

If we compare the result computed by SM and compare it with the result
of the computation ES, that is, two members of R

rN , we have a measure of
how closely M is able to preserve approximations to S applied to the exact
trajectory. If S can be chosen so that the norm of the difference between
these two results can be estimated in terms of hp+1, then we say that ‘the
method M has order p relative to S’. This enables us to state:

Definition 4.1. The method M has order p if there exists a starting
method S such that M has order p relative to S.
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E

S

S

M

SM

ES

O(hp+1)

Figure 4.1. Order of general linear method.

E E E

S S S S S

M M
M

F

O(hp)

O(hp)

Figure 4.2. Global error.

The relationship between M, S and E is illustrated in Figure 4.1.
According to this view of order, the method under consideration can-

not be looked at in isolation but will always be related to the starting
method. Looked at another way, the order is related to the interpretation

of the quantities the method is intended to approximate. This is actually
a classical point of view and reflects the fact that multivalue methods typ-
ically input approximations to specific quantities known in advance. The
most well-known example is linear k-step methods in which the data input
to step number n consists of approximations to y(xn−i) and hy′(xn−i) for
i = 1, 2, . . . , k. From the classical point of view, a Runge–Kutta method
treats its single item of input as an approximation to y(xn−1). However,
there is no fundamental reason why we should restrict ourselves to this inter-
pretation and it might be possible to regard S as an arbitrary Runge–Kutta
method. Does this lead to any sort of enhancement of the concept of order,
for Runge–Kutta methods? The answer is yes, as we will see in Section 4.2.

In addition to the mapping S, we postulate the existence of a ‘finishing
method’ F , defined as a right-sided inverse of S. That is, if y[0] is found by
applying S to y0, then y0 is found by applying F to y[0].

Consider a long term integration consisting of n steps with step-size h =
(x − x0)/n. Once n steps have been carried out to give the result y[n], F
is applied to this to obtain an approximation to y(x). Assuming that the
method is stable, the errors in each of the steps combine to give an overall
error, that is a global error, nO(hp+1) = O(hp). The way this works is
shown in Figure 4.2.
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Table 4.1. Analysis for effective order 5.

i ti (ΨΦ)(ti) − (EΨ)(ti)

1 φ1 − 1

2 φ2 − 1
2

3 φ3 − 1
3 − 2ψ2

4 φ4 + ψ2φ1 − 1
6 − ψ2

5 φ5 − 1
4 − 3ψ2 − 3ψ3

6 φ6 + φ2ψ2 − 1
8 − 3

2ψ2 − ψ3 − ψ4

7 φ7 + φ1ψ3 − 1
12 − ψ2 − 2ψ4

8 φ8 + φ1ψ4 + φ2ψ2 − 1
24 − 1

2ψ2 − ψ4

9 φ9 − 1
5 − 4ψ2 − 6ψ3 − 4ψ5

10 φ10 + φ3ψ2 − 1
10 − 2ψ2 − 5

2ψ3 − ψ4 − ψ5 − 2ψ6

11 φ11 + φ2ψ3 − 1
15 − 4

3ψ2 − ψ3 − 2ψ4 − 2ψ6 − ψ7

12 φ12 + φ2ψ4 + φ3ψ2 − 1
30 − 2

3ψ2 − 1
2ψ3 − ψ4 − ψ6 − ψ8

13 φ13 + φ1ψ
2
2 + 2φ4ψ2 − 1

20 − ψ2 − ψ3 − ψ4 − 2ψ6

14 φ14 + φ1ψ5 − 1
20 − ψ2 − 3ψ4 − 3ψ7

15 φ15 + φ1ψ6 + φ4ψ2 − 1
40 − 1

2ψ2 − 3
2ψ4 − ψ7 − ψ8

16 φ16 + φ1ψ7 + φ2ψ3 − 1
60 − 1

3ψ2 − ψ4 − 2ψ8

17 φ17 + φ1ψ8 + φ2ψ4 + φ4ψ2 − 1
120 − 1

6ψ2 − 1
2ψ4 − ψ8

4.2. Effective order of Runge–Kutta methods

In the case of a Runge–Kutta method, the starting method must itself be a
Runge–Kutta method because it accepts a single input and yields a single
output. For a given tree t, let Φ(t) denote the elementary differential associ-
ated with the main method and Ψ(t) the elementary differential associated
with the starting method. For convenience, we will write Φ(ti) = φi and
Ψ(ti) = ψi. Using this notation, the numbered trees are shown, together
with expressions for (ΨΦ)(ti)− (EΨ)(ti) in Table 4.1. For simplification, ψ1

has been assigned the value 0. This turns out not to limit the generality of
the conditions on Ψ.

Because ψ2, ψ3, ψ4, ψ5, ψ6 and ψ7 can have arbitrary values, there is
much more freedom on Φ for effective order 5 than for classical order. The
following is a possible solution:

[φ1, φ2, . . . , φ17] = [1, 1
2 , 1

3 , 1
6 , 1

4 , 1
8 , 1

12 , 1
24 , 31

150 , 31
300 , 1

15 , 1
30 , 31

600 , 13
300 , 13

600 , 1
60 , 1

120 ],

[ψ1, ψ2, . . . , ψ8] = [0, 0, 0, 0, 1
600 , 1

1200 ,− 1
600 ,− 1

1200 ],
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and the tableau for a method yielding the given Φ values is

0
2
5

2
5

2
5

1
5

1
5

3
5

3
20 − 3

10
3
4

1 9
44

5
22 −15

44
10
11

11
72 0 25

72
25
72

11
72

.

Effective order of singly implicit Runge–Kutta methods

Singly implicit Runge–Kutta methods represent an attempt to achieve the
combined goals of L-stability, stage order and order equal to s and efficient
implementation. It is possible to satisfy all these requirements up to order 8,
with 7 the only exception, or slightly weakened requirements (A(α)-stability
for α close to 1

2π and zero stability function at infinity) for s much higher.
Unfortunately, these methods have a disadvantage that abscissae lie outside
the interval [0, 1], if s > 2. This can be overcome by applying the principle
of effective order. Even the difficulty associated with variable step-size can
be overcome for this type of method because the high stage order makes
it possible to correct the implied starting perturbation as the solution de-
velops. Furthermore, no finishing method is required for individual steps
because one of the stages can be used for output.

4.3. Algebraic criterion for order

Let ξ ∈ Xr represent the starting method, where X is the algebraic structure
introduced in Section 1.6. Then the vector of stages, as represented by a
member of Xs

1 , is found from the relation

η = A(ηD) + Uξ,

and the result computed at the end of the step is represented by

B(ηD) + V ξ.

If this is to agree with Eξ up to trees with order p then we have a convenient
criterion for this order. We formalize this as follows.

Theorem 4.2. The general linear method (A, U, B, V ) has order p if there
exists ξ ∈ Xr and η ∈ Xs

1 , such that, for every tree t satisfying r(t) ≤ p,

η(t) = A(ηD)(t) + Uξ(t),

(Eξ)(t) = B(ηD)(t) + V ξ(t).
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Table 4.2. Calculation of order for method (4.1).

t ξ1 ξ2 η1 η1D η2 η2D η3 η3D ξ̂1 ξ̂2 Eξ1 Eξ2

1 0 −1 0 1 1
2 1 1 1 1 0 1 0

2 0 1
2 0 0 1

8
1
2

1
2 1 1

2 0 1
2 0

3 0 − 1
3 0 0 − 1

12
1
4

5
6 1 1

3 0 1
3 0

4 0 − 1
6 0 0 − 1

24
1
8

5
12

1
2

1
6 0 1

6 0

5 0 1
4 0 0 1

16
1
8 0 1 1

4 0 1
4 0

6 0 1
8 0 0 1

32
1
16 0 1

2
1
8 0 1

8 0

7 0 1
12 0 0 1

48 − 1
12 − 1

4
5
6

1
12 0 1

12 0

8 0 1
24 0 0 1

96 − 1
24 − 1

8
5
12

1
24 0 1

24 0

9 0 − 1
5 0 0 − 1

20
1
16

13
40 1 5

24 0 1
5 0

10 0 − 1
10 0 0 − 1

40
1
32

13
80

1
2

5
48 0 1

10 0

11 0 − 1
15 0 0 − 1

60 − 1
24 − 1

60
5
6

1
9 0 1

15 0

12 0 − 1
30 0 0 − 1

120 − 1
48 − 1

120
5
12

1
18 0 1

30 0

13 0 − 1
20 0 0 − 1

80
1
64

13
160

1
4

5
96 0 1

20 0

14 0 − 1
20 0 0 − 1

80
1
16

7
40 0 1

24 0 1
20 0

15 0 − 1
40 0 0 − 1

160
1
32

7
80 0 1

48 0 1
40 0

16 0 − 1
60 0 0 − 1

240
1
48

7
120 − 1

4 − 1
36 0 1

60 0

17 0 − 1
120 0 0 − 1

480
1
96

7
240 − 1

8 − 1
72 0 1

120 0

An example of order calculation

Consider the general linear method

[
A U
B V

]
=




0 0 0 1 0
3
4 0 0 3

4
1
4

−2 2 0 2 −1

1
6

2
3

1
6 1 0

0 0 0 1 0




. (4.1)

Let η1, η2, η3 denote the group elements representing the stages and assume
the starting method is given by 1 for the first component and E

−1 for the
second component. The calculation of the various quantities needed to es-
tablish order are given in Table 4.2. The columns headed ξ̂1 and ξ̂2 represent
the output computed by the method. For order 5, these would equal the
Eξ1 and Eξ2 columns, respectively. Note that the trees are numbered in the
same order as for Table 4.1.
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Because of differences between ξ̂1 and Eξ1, the method has order only 4.

4.4. Methods with high stage order

In the formal definition of order based on Figure 4.1, the existence of S
so that this diagram commutes to within O(hp+1) was required for the
method to have order p. If this starting methods exists so that, in addition,
the stages approximate y at specific points related to the current step to
within O(hq+1), where q ≤ p, then the method is said to have stage order q.
If q ≥ p − 1, the combined criteria for order and stage order become much
simpler.

Denote the tall tree [kτ ]k by tk. In the special case k = 0, tk will be the
empty tree. Suppose that, for a starting method which gives order p and
stage order q, ξ(tk) = wk. The order conditions now give

η(tk) = Aηk−1 + Uwk, k = 1, 2, . . . , q,
k∑

l=0

1

l!
wk−l = Bηk−1 + V wk, k = 1, 2, . . . , p.

By the stage order conditions, η(tk) is the vector ck/k!, where ck denotes the
component-by-component power. Furthermore, (ηD)(tk) = ck−1/(k − 1)!.

Write

C =




1 c1
1
2!c

2
1 · · · 1

p!c
p
1

1 c2
1
2!c

2
2 · · · 1

p!c
p
2

1 c3
1
2!c

2
3 · · · 1

p!c
p
3

...
...

...
...

1 cs
1
2!c

2
s · · · 1

p!c
p
s




, K =




0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 1
0 0 0 · · · 0




,

and the necessary order and stage order p conditions become

C = ACK + UW, (4.2)

WE = BCK + V W, (4.3)

where W and E are the matrices

W =
[
w0 w1 w2 . . . wp

]
, E =




1 1 1
2!

1
3! · · · 1

p!

0 1 1 1
2! · · · 1

(p−1)!

0 0 1 1 · · · 1
(p−2)!

0 0 0 1 · · · 1
(p−3)!

...
...

...
...

...

0 0 0 0 · · · 1




.
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If the stage order is only required to be q = p − 1, then the last column
is ignored in (4.2). We will show that these are actually sufficient order
conditions. First, however, we remark that (4.2) and (4.3) can be expressed
in a different form.

Theorem 4.3. Necessary conditions for order p and stage order q ≥ p−1
conditions are the existence of a polynomial-valued vector φ(z) such that

exp(cz) = zA exp(cz) + Uφ(z) + O(zq+1), (4.4)

exp(z)φ(z) = zB exp(cz) + V φ(z) + O(zp+1). (4.5)

Proof. Let φ(z) =
∑p

i=0 ziwi. Add the columns of (4.2) and (4.3), in
each case multiplying by the sequence of factors, 1, z, z2, . . . , zp and the
result follows.

Theorem 4.4. The conditions given in Theorem 4.3 are sufficient for
order p and stage order q.

Note that, because of the equivalence of (4.2) (with the last column
ignored if q = p − 1) and (4.3) with (4.4) and (4.5), we will actually prove
the sufficiency of the former conditions.

Proof of Theorem 4.4. Define the starting method so that

y[0] =

p∑

i=0

wih
iy(i)(x0).

We will first show the stage order property. That is, the stage values are

Yi =

q∑

k=0

hkck
i y

(k)(x0)/k! + O(hq+1), i = 1, 2, . . . , s.

This is verified by noting that these stage values imply that

hFj =

q∑

k=1

hkck−1
j y(k−1)(x0)/(k − 1)! + O(hq+2), j = 1, 2, . . . , s,

and that, because of (4.2),

Yi −
s∑

j=1

aijhFj =

q∑

k=0

(
C − ACK

)
ik

hky(k)(x0) + O(hq+1)

=

q∑

k=0

(UW )ikh
ky(k)(x0) + O(hq+1)

=
r∑

j=1

uijy
[0]
j + O(hq+1).
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E+

S+

S+

M

S+
M

E+ S+

O(hp+2)

Figure 4.3. Iterative structure
of underlying one-step method.

Multiplying y[0] by E is equivalent to replacing x0 by x0 + h in the formula
for the starting method components, to within O(hp+1). The order result
for the method now follows in a similar way to the stage order result.

4.5. The underlying one-step method

In Figure 4.1 denote the error term by φ. This is the Taylor expansion of S
applied to y(x0 + h) minus the composition SM applied to y(x0). Resolve
φ into two terms,

φ = ǫu + (I − V )δ, (4.6)

where u is the preconsistency vector which satisfies (I − V )u = 0. Now
construct a new diagram in which E is replaced by E+ = E − ǫ and S is
replaced by S+ = S − δ.

The meanings of E+ and S+ require some explanation. In the case of E+,
this represents a perturbation of the flow of the differential equation in which
the value of ǫ, evaluated at y(x0), is subtracted from y(x0 + h). Similarly,
S+ represents the unperturbed starting method S applied to y(x0), with the
vector-valued error term δ, evaluated at y(x0), subtracted from the result.

The diagram in Figure 4.1 is now replaced by Figure 4.3 so that the order,
in the sense of this diagram, has been increased to p+1. This process can be
repeated to obtain a sequence of one-step methods which we can denote by
Ep = E , Ep+1 = E+, Ep+2, . . . , together with corresponding starting methods
Sp = S,Sp+1 = S+,Sp+2, . . . . According to the construction of these various
operations, the two compositions

SiM and EiSi

commute to within order i for i = p, p + 1, p + 2, . . . . The underlying one-
step method is the notional limit of the Ei sequence. This construction was
proposed, in the case of linear multistep methods by Kirchgraber (1986)
and extended to the case of general linear methods by Stoffer (1993).

Denote the underlying one-step method by E⋆ and the limit of the
sequence of iterated starting methods by S⋆ and we have a new diagram
corresponding to Figure 4.1 given by Figure 4.4. Now the diagram exactly
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E

E⋆

S⋆

S⋆

M

S
⋆ M

=
E
⋆ S

⋆

O(hp+1)

Figure 4.4. Underlying one-step method.

commutes but E is replaced by E⋆. Thus, we can interpret this to mean
that the general linear method behaves exactly like a one-step method.
Consequently, error analysis is reduced to understanding how well E⋆ ap-
proximates E .

As an example of the computations involved in the analysis of the un-
derlying one-step method, return to the method given in (4.1) and the
information given in Table 4.2. From this table we see that the coefficients
of EiSi −SiM of the elementary differentials associated with the fifth-order
trees t9, t10, . . . , t17 are

[15 , 1
10 , 1

15 , 1
30 , 1

20 , 1
20 , 1

40 , 1
60 , 1

120 ] − [ 5
24 , 5

48 , 1
9 , 1

18 , 5
96 , 1

24 , 1
48 ,− 1

36 ,− 1
72 ]

= [− 1
120 ,− 1

240 ,− 2
45 ,− 1

45 ,− 1
480 , 1

120 , 1
240 , 2

45 , 1
45 ].

Let φ1 =
∑17

i=9 σ(ti)
−1Cih

5F (ti)(y0) denote the corresponding error terms,
where Ci is found from this array. Because there are no error terms of
this order in the second output component, we find ǫ and δ by solving the
equation [

φ1

0

]
= ǫ

[
1
1

]
+

[
0 0

−1 1

] [
δ1

δ2

]
,

where we have inserted the actual values of u and I−V . A possible solution
is ǫ = δ1 = φ1, δ2 = 0.

5. Linear and non-linear stability

5.1. Linear stability

The linear stability analysis of numerical methods, exemplified in Figure 1.2
is based on the test problem

y′(x) = qy(x). (5.1)

The aim of this type of analysis is to investigate the existence of bounds on
the step-size to achieve stable numerical behaviour for a stable problem. We
will want to identify methods for which there is never any such restriction
because stable behaviour will occur whenever Rehq ≤ 0.
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For a general linear method (A, U, B, V ), the linear problem (5.1) will
produce output which satisfies the equations

Y = hqAY + Uy[n−1], (5.2)

y[n] = hqBY + V y[n−1]. (5.3)

For convenience write z = hq and solve for Y from (5.2), to give Y =
(I − zA)−1Uy[n−1]. Substitute into (5.3) to give y[n] = M(z)y[n−1], where

M(z) = V + zB(I − zA)−1U. (5.4)

The matrix-valued function M(z) is the ‘stability function’ and its charac-
teristic polynomial

Φ(w, z) = det(wI − M(z)),

determines its linear stability properties.

Definition 5.1. A general linear method (A, U, B, V ) is A-stable if M(z)
is power bounded whenever Re z < 0.

The test problem on which this definition is based can be made more
realistic, but of course more difficult to analyse if q is allowed to be time-
dependant. That is, we might consider the problem

y′(x) = q(x)y(x). (5.5)

In this case, we need to evaluate z = hq(x) at each stage value and we write
the collection of all values of this quantity that occur in the step in the form
of a diagonal matrix:

Z = diag(hq(xn−1 + hc1), hq(xn−1 + hc2), . . . , hq(xn−1 + hcs)).

For simplicity we will assume that the c components are distinct so that
there is no reason to suppose that two diagonal elements of Z are necessarily
equal. The stage derivative vector is now ZY and the stage values and
output values are now

Y = (I − AZ)−1Uy[n−1], y[n] =
(
V + BZ(I − AZ)−1U

)
y[n−1]. (5.6)

Thus for a problem of the form (5.5), it is natural in stability consider-
ations to replace use of M(z) given by (5.4) by the matrix-valued function
of r complex variables, given by

M̃(Z) = V + BZ(I − AZ)−1U.

This leads to the following definition.

Definition 5.2. A general linear method (A, U, B, V ) is AN-stable if M̃(Z)
given by (5.6) is power-bounded for Z = diag(z1, z2, . . . , zs) if

Re zi < 0, i = 1, 2, . . . , s.
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5.2. Non-linear stability

To analyse stable behaviour for non-linear problems it is necessary to find
a problem class for which stability of the exact solution is assured. We
reintroduce (from Section 1.3) a problem made famous in Dahlquist (1976):

y′(x) = f(x, y(x)), 〈u − v, f(x, u) − f(x, v)〉 ≤ 0. (5.7)

Consideration of this problem led to the construction of ‘one-leg methods’
and to the definition of G-stability.

For a linear multistep method (ρ, σ), normalized so that σ(1) = 1, in
which ŷn is computed as the solution to the equation

k∑

i=0

αiŷn+i = h
k∑

i=0

βif(x̂n+i, ŷn+i), (5.8)

the one-leg counterpart defines yn as the solution to the equation

k∑

i=0

αiyn−i = hf

(
xn,

k∑

i=0

βiyn−i

)
. (5.9)

From a linear stability point of view, these two methods have the same
stability function:

ρ(w) − zσ(w) = 0.

Furthermore, stable behaviour, even for solutions to the non-linear problem
(5.7), is closely related in the sense that if the y sequence satisfies (5.9) and

x̂n =

k∑

i=0

βixn+i, ŷn =

k∑

i=0

βiyn+i,

then ŷ satisfies (5.8). The crucial result in Dahlquist (1976) is a condition
on (ρ, σ) such that, if two sequences y and y satisfy (5.9), then, for a norm
‖ · ‖G, defined in the paper,

‖y[n] − y[n]‖G ≤ ‖y[n−1] − y[n−1]‖G, (5.10)

if f satisfies the condition (5.7).
Why, it might be asked, was it necessary to introduce one-leg methods,

rather than carry out an analysis of non-linear stability directly in terms of
linear multistep methods?

From the general linear methods point of view, the answer is simple. A
linear multistep method, in its standard formulation, is reducible, as we
discussed in Section 3.3. With the irreducible formulation given by (3.4),
non-linear stability for linear multistep methods can be analysed in their
own right (Butcher and Hill 2006).
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Non-linear stability of Runge–Kutta methods was introduced in Butcher
(1975) where it was shown that certain implicit methods, such as Gauss
methods and Radau IIA methods have the property known as B-stability.
A method is B-stable if, for a method satisfying (5.7),

‖yn − yn‖ ≤ ‖yn−1 − yn−1‖,
for two approximation sequences y and y. This definition was originally
introduced for an autonomous version of (5.7), but BN-stability, introduced
in Burrage and Butcher (1979) made use of the general non-autonomous
version of this model problem. At the same time AN-stability, where a
non-autonomous linear problem is used, was introduced.

The necessary and sufficient conditions for BN-stability (and incidentally
for AN-stability), at least for non-confluent methods, was shown to hinge
on a matrix M given by

M = diag(b)A + AT diag(b) − bbT .

It was shown in Burrage and Butcher (1979) and Crouzeix (1979) that a
method is B-stable if M and diag(b) are each positive semi-definite. In an
unpublished report, Dahlquist and Jeltsch showed that the elements of b
must actually be positive for B-stability, or the method can be reduced to
a simpler method, with fewer stages.

Linear and non-linear stability were analysed and inter-related in a series
of papers (Burrage and Butcher 1980, Burrage 1980, Butcher 1981b, 1987b).
The criterion, referred to as algebraic stability, which generalizes Dahlquist’s
G-stability criterion and the Runge–Kutta criterion based on M, makes use
of the matrix

M̂ =

[
DA + AT D − BT GB DU − BT GV

UT D − V T GB G − V T GV

]
. (5.11)

In (5.11), G is a positive-definite matrix and D is a diagonal matrix of pos-
itive numbers. Under various conditions, it was shown in Butcher (1987c)

that M̂ positive semi-definite is equivalent to AN-stability and to stable
behaviour in the sense of (5.10), for problems satisfying (5.7).

An interesting example of an algebraically stable method is the following,
discovered by Dekker (1981), and shown by him to have this property:

[
A U
B V

]
=




2
3 0 1 −7

6
2
3

2
3 1 1

6

1
2

1
2 1 0

− 1
11

7
11 0 5

11




. (5.12)

To verify algebraic stability, substitute G = diag(1, 11
12), D = diag(1

2 , 1
2)

in (5.11). Like Runge–Kutta methods, but unlike linear multistep methods,
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Figure 5.1. Solution of (5.15) using (5.12) ( ) and
(5.13) ( ), compared with the exact solution ( ).

algebraic stability is not equivalent to A-stability. For example, compare
with (5.12) the method

[
A U
B V

]
=




2
3 0 1 −7

6
2
3

2
3 1 1

6

179
88 −19

88 1 − 9
11

23
44

1
44 0 5

11




. (5.13)

The two methods have the same stability functions, and are thus each A-
stable. Furthermore, the stage abscissa vector is [−1

2 , 3
2 ] in each case. How-

ever, (5.13) is not algebraically stable.
As an example, it should be expected that a problem of the form

y′(x) = L(x, y(x))y(x), (5.14)

where L takes values on the set of N × N matrices such that the symmet-
ric part of −L is positive semi-definite, will exhibit stable behaviour when
solved using (5.12) but not when solved using (5.13).

In particular consider the initial value problem
[
y′1(x)

y′2(x)

]
=
(
y1(x)2 + 1

4y2(x)2
) [−y2(x)

y1(x)

]
,

[
y1(0)

y2(0)

]
=

[
1

0

]
. (5.15)
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[n]
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after n steps,

using (5.12) ( ) and (5.13) ( ).

For this problem, L takes on skew-symmetric values, so that ‖y(x)‖2 is not
simply bounded, but is invariant.

To solve (5.15), using either (5.12) or (5.13), an appropriate starting

value is y
[0]
1 = [1, 0]T , y

[0]
2 = [0, h]T . Results found from these methods

using constant step-size h = π/20 are presented in Figure 5.1 for n steps up
to n = 80, which corresponds to a single period in the exact solution. In
addition, n = 104 and 105 are also given in the case of (5.12). Even though
there is a considerable phase shift, in accordance with the low accuracy of
the numerical approximation, it is seen that the solutions using (5.12) adhere
closely to the ‖y(x)‖2 = 1 manifold. This is explored further in Figure 5.2,

where ‖y[n]
1 ‖2 is evaluated for (5.12) up to n = 105 and for (5.13) until the

value of this quantity drifts too far away. Also computed, but not explicitly

shown, is the value of ‖y[n]
1 ‖2 + 11

12‖y
[n]
2 ‖2, which is virtually constant.

We will now give a partial explanation of this phenomenon. First we note
that, for (5.12), with the values of G and D that have been proposed, the
partitioned matrix in (5.11) has the value

M̂ = 8
11




3
4
1
4

0

−1



[

3
4

1
4 0 −1

]
,

so that we can evaluate the following inner product:

[
hF T (y[n−1])T

]
M̂

[
hF

y[n−1]

]
= 8

11‖3
4hF1 + 1

4hF2 − y
[n−1]
2 ‖2. (5.16)

Doing the calculation another way we find that (5.16) can be written as

hF T D(hAF + Uy[n−1]) + (hAF + Uy[n−1])T DhF

− (hBF + V y[n−1])T G(hBF + V y[n−1])

+ (y[n−1])T G(y[n−1]). (5.17)
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Write vT Gv as ‖v‖2
G with the corresponding inner product equal to 〈u, v〉 =

uT Gv and (5.17) simplifies to

2
s∑

i=1

di〈hFi, Yi〉 + ‖y[n]‖2
G − ‖y[n−1]‖2

G.

With the assumed form of the differential equation, we deduce

‖y[n]‖G = ‖y[n−1]‖G − 8
11‖3

4hF1 + 1
4hF2 − y

[n−1]
2 ‖2,

so that we cannot expect ‖y[n]‖G to be invariant. However, for the problem

we are considering, 3
4hF1 + 1

4hF2 − y
[n−1]
2 has a small norm which decreases

rapidly if ‖y[n]‖G becomes small. If we replace the method (5.12) by one

in which, for an appropriate D and G, M̂ is the zero matrix, then we can
expect precise invariance of ‖y[n]‖G. For example,

[
A U
B V

]
=




1
2 0 1 −1

2

1 1
2 1 −1

2

1
2

1
2 1 0

1 1 0 −1


, (5.18)

for which we need to use G = diag(1, 1
4), D = diag(1

2 , 1
2). The invariant

behaviour of ‖y[n]‖2
G = (y

[n]
1 )2 + 1

4(y
[n]
2 )2 is verified by numerical experiment.

This method has order only 2 and does not seem to have any real advan-
tages over the implicit mid-point rule method given by

[
A U
B V

]
=

[
1
2 1

1 1

]
,

However, it is possible to construct more accurate methods such as

[
A U
B V

]
=




3+
√

3
6 0 1 −3+2

√
3

3

−
√

3
3

3+
√

3
6 1 3+2

√
3

3

1
2

1
2 1 0

1
2 −1

2 0 −1




, (5.19)

which has order 4, as we see below. As for (5.18), M̂ = 0; but in this case

we use G = diag(1, 1 + 2
√

3
3 ), D = diag(1

2 , 1
2).

Because (5.19) is symplectic, in a slightly more general sense than applies
to Runge–Kutta methods, it has a potential role in structure-preserving
algorithms. Before we discuss this question, we verify its order.
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Theorem 5.3. The order of (5.19) is 4.

Proof. Given an input approximation

y[0] =

[
y(x0)√

3
12 h2y′′(x0) −

√
3

108h4y(4)(x0) + 9+5
√

3
216 h4 ∂f

∂y
y(4)(x0)

]
, (5.20)

we need to verify that the output is

y[1] =




y(x0)+hy′(x0)+
1
2h2y′′(x0)+

1
6h3y(3)+ 1

24h4y(4)+O(h5)
√

3
12 h2y′′(x0) +

√
3

12 h3y(3)(x0)+

7
√

3
216 h4y(4)(x0) + 9+5

√
3

216 h4 ∂f
∂y

y(4)(x0) + O(h5)


, (5.21)

found by replacing x0 by x1 = x0 + h and expanding about x0. By Taylor
expansions we find

Y1 = y
(
x0 + h3+

√
3

6

)
+ 9+5

√
3

108 h3y(3)(x0) + O(h4),

hF1 = hy′
(
x0 + h3+

√
3

6

)
+ 9+5

√
3

108 h4 ∂f
∂y

y(3)(x0) + O(h5), (5.22)

Y2 = y
(
x0 + h3−

√
3

6

)
− 9+5

√
3

108 h3y(3)(x0) + O(h4),

hF2 = hy′
(
x0 + h3−

√
3

6

)
− 9+5

√
3

108 h4 ∂f
∂y

y(3)(x0) + O(h5). (5.23)

Using (5.22) and (5.23), evaluate y[1] = hAF + V y[0] by Taylor expansions,
to obtain agreement with (5.21).

5.3. Experiments with a Hamiltonian problem

Consider the simple-pendulum problem

ṗ = − sin(q), p(0) = 1,

q̇ = p, q(0) = 0.
(5.24)

This is based on the Hamiltonian H(p, q) = 1
2p2 − cos(q), where we note

that

ṗ = −∂H

∂q
, q̇ =

∂H

∂p
.

Because of the initial values assigned to (5.24), the dependent variables lie
in the intervals

p ∈ [−1, 1], q ∈ [−1
3π, 1

3π]

and the period is calculated to be T = 6.743001419251.
Attempts to solve this problem using the Euler and implicit Euler

methods, are shown in Figure 5.3, with the exact solution also given for



210 J. C. Butcher

Figure 5.3. Left to right: exact solution,
Euler method, implicit Euler method.

comparison. A step-size 1
16T is used and the computations are confined to

the interval [0, T ], except for the Euler case which leaves the field of view
after only 7 time-steps.

To illustrate symplectic behaviour for the exact solution, and to indicate
that it does not occur for the two numerical approximations, a set of initial
points, shown in black, is used at time zero. For the exact symplectic result,
even though the set of points has its shape distorted, the area remains
unchanged. For the Euler and implicit Euler methods, however, not only
do the computed results drift rapidly away from the correct trajectory, but
the areas change in size.

We will consider the use of three alternative methods. These are:

(i) the order 4 Gauss Runge–Kutta method with defining matrices

[
A U
B V

]
=




1
4

1
4 − 1

6

√
3 1

1
4 + 1

6

√
3 1

4 1

1
2

1
2 1


;

(ii) the order 2 Gauss method, usually referred to as ‘the mid-point rule
method’, defined by [

A U
B V

]
=

[
1
2 1

1 1

]
;

(iii) the general linear method given by (5.19).

The general linear method requires a starting procedure to produce input
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Figure 5.4. Left to right: exact solution,
mid-point rule, symplectic general linear method.

for the first step of the method and it is proposed to use

[
A U
B V

]
=




3+
√

3
6 0 1

−3+
√

3
3

3+
√

3
6 1

0 0 1
√

3−1
8

1−
√

3
8 0




.

This simply passes through the initial value y(x0) as the first component

y
[0]
1 and produces an approximation to 1

12

√
3h2y′′(x0) as the value of y

[0]
2 .

To evaluate the behaviour of these methods, a greater step-size than was
used in Figure 5.3 is needed, otherwise the errors will be imperceptible;
we will use a step-size 1

8T . Even with steps this large, it is impossible to
distinguish method (i) from the exact solution and we therefore omit this
case from the results we present. The exact result and methods (ii) and (iii)
are shown in Figure 5.4. We see that the mid-point rule exhibits inexact
behaviour but, because it is symplectic, the areas of the solution sets do not
change. Similarly, the general linear method performs very well and also
appears to preserve areas.

6. Special families of methods

6.1. Re-use methods and two-step Runge–Kutta methods

The idea of using derivative approximations, computed in a previous step,
as contributing to the computation of the current step, was proposed in
Butcher (1966). It has recently been developed under the name ‘two-step
Runge–Kutta methods’. Although we will not attempt to survey this large
body of work in detail, we will derive order conditions for a family of these
methods.
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As a general linear method, the inputs to step n are the computed approx-
imations to y(xn−2) and y(xn−1) together with the s scaled stage derivatives
computed within step number n − 1. Hence we write

y[n−1] =




yn−1

yn−2

hF
[n−1]
1

hF
[n−1]
2
...

hF
[n−1]
s




, y[n] =




yn

yn−1

hF
[n]
1

hF
[n]
2
...

hF
[n]
s




, Y [n] =




Y
[n]
1

Y
[n]
2
...

Y
[n]
s




, F [n] =




F
[n]
1

F
[n]
2
...

F
[n]
s




and we write the coefficient matrix in the partitioned form

[
A U

B V

]
=




A u e − u A

bT θ 1 − θ b
T

0 1 0 0

I 0 0 0




.

This method is also conveniently written using an extension of the standard
tableau for Runge–Kutta methods,

c u A A

θ b
T

bT
,

indicating that Y
[n]
i , i = 1, 2, . . . , s and yn are computed using the formulae

Y
[n]
i = uiyn−2 + (1 − ui)yn−1 + h

s∑

j=1

(aijF
[n−1]
j + aijF

[n]
j ), (6.1)

F
[n]
i = f(Y

[n]
i ), (6.2)

yn = θyn−2 + (1 − θ)yn−1 + h
s∑

i=1

(biF
[n−1]
i + biF

[n]
i ). (6.3)

To find the order conditions, write η ∈ Xs
1 , to represent the stage values.

We then have

η = uE
−1 + (1 − u) + AE

−1ηD + AηD. (6.4)

The values of ηi(t), i = 1, 2, . . . , s are found recursively and these are then
substituted into the order equation

E(t) = θE
−1(t) + b

T
(E −1ηD)(t) + bT (ηD)(t), r(t) ≤ p.

If we are going to require that η(τ) = c, with c prescribed in advance, then
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Table 6.1. Analysis of re-use method.

η( ) c

(ηD)( ) 1

(E−1η)( ) c − 1

(E−1ηD)( ) 1

η( ) 1
2u + A(c − 1) + Ac

(ηD)( ) c

(E−1η)( ) 1
2u + A(c − 1) + Ac − c + 1

21

(E−1ηD)( ) c − 1

η( ) − 1
3u + A(c − 1)2 + Ac2

(ηD)( ) c2

(E−1η)( ) 2c − 1
31 − 4

3u + A(c2 − 4c + 31) + A(c2 − 2c)

(E−1ηD)( ) (c − 1)2

η( )
− 1

6u + A( 1
2u + A(c − 1) + Ac − c + 1

21)

+A( 1
2u + A(c − 1) + Ac)

(ηD)( ) 1
2u + A(c − 1) + Ac

(E−1η)( )
1
2c − 1

61 − 2
3u + A( 1

2u + A(c − 1) + Ac − 2c + 3
21)

+A( 1
2u + A(c − 1) + Ac − c)

(E−1ηD)( ) 1
2u + A(c − 1) + Ac − c + 1

21

the conditions become simpler. The additional condition is equivalent to

c = −u + (A + A)1 (6.5)

and this can always be satisfied by the choice of u.
We will present in Table 6.1 formulae for η(t) and associated quantities

up to order 3. It will be assumed throughout that c is defined by (6.5). It is
now a routine task to compute the order conditions up to order 4. However,
we will avoid the full generality of this task and settle for the case defined
by s = 2, u = 0, θ = 0 and c = [12 , 1]T . The order conditions associated

with the trees , , , enable bT and b
T

to be found. These are

b
T

= [0, 1
6 ], bT = [23 , 1

6 ].

The order conditions associated with the trees , and become

−1
3a11 − 1

6a21 + 1
6a21 = 1

4 ,

−1
6a11 − 1

12a21 + 1
12a21 = 1

8 ,

−1
6a11 − 1

4a21 + 1
12a21 = 7

36 .
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−2 −1−3 0

i

2i

3i

−i

−2i

−3i

re-use method

Runge–Kutta method

rescaled re-use method

Figure 6.1. Stability region for re-use method.

These have solution

a11 = 1
2a21 − 13

24 , a21 = − 5
12 ,

and the order condition associated with the remaining tree gives a21 = 13
12

or a21 = 11
12 . Choose the second of these and we find the tableau for the

method to be
1
2 0 − 1

12
7
12 0 0

1 0 − 5
12

1
2

11
12 0

0 0 1
6

2
3

1
6

.

The stability region for this method is shown in Figure 6.1. As in Figure 2.1,
we also give a rescaled stability region to allow for the fact that this method
has only two stages, compared with four for the Runge–Kutta method.

Recently methods based on re-use of quantities computed in the previous
step have been investigated under the name ‘two-step Runge–Kutta meth-
ods’. Basic references on these methods are Jackiewicz and Tracogna (1995,
1996) and Bartoszewski and Jackiewicz (1998).

6.2. ARK methods

The aim of ‘almost Runge–Kutta’ or ARK methods is impose on re-use
methods the additional requirement expressed in the following.
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Definition 6.1. A general linear method is RK-stable (possesses Runge–
Kutta stability) if its stability matrix has only a single nonzero eigenvalue.

This means that, for a method with r values passed from step to step and
stability matrix M(z),

det(wI − M(z)) = wr−1(w − R(z)).

The function R(z), because it equals the trace of M(z), is a rational function,
and in the case of explicit methods a polynomial, and will be referred to as
the stability function for the method.

Before formulating ARK methods, we will make a brief remark about
traditional Runge–Kutta methods. The classical Kutta method, as a general
linear method, is 



0 0 0 0 1
1
2 0 0 0 1

0 1
2 0 0 1

0 0 1 0 1

1
6

1
3

1
3

1
6 1




. (6.6)

It is also possible to formulate this as a multivalue method with r = 2:



0 0 0 0 1 1
2

1
2 0 0 0 1 0

0 1 0 0 1 0
1
3

1
3

1
6 0 1 1

6

1
3

1
3

1
6 0 1 1

6

0 0 0 1 1 0




, (6.7)

where the derivative from the first stage in (6.6) is now computed as the
last stage of (6.7). The two output quantities are approximations to the
first terms in the Taylor series at the start of the following step:

y
[n]
1 ≈ y(xn), y

[n]
2 ≈ hy′(xn).

Make a similar change to the re-use method (2.3) and renumber the ex-

isting y
[n]
2 as y

[n]
3 : 



0 0 0 1 5
8 −1

8

2 0 0 1 −3
2

1
2

2
3

1
6 0 1 1

6 0

2
3

1
6 0 1 1

6 0

0 0 1 0 0 0

0 0 0 0 1 0




. (6.8)
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Instead of passing on y
[n]
3 ≈ hy′(xn−1), in addition to y(xn), and hy′(xn),

it is possible to replace y
[n]
3 by an approximation to h2y′′(xn) which can be

found as the difference between approximations to hy′(xn) and hy′(xn−1).
This gives the equivalent but more convenient formulation




0 0 0 1 1
2

1
8

2 0 0 1 −1 −1
2

2
3

1
6 0 1 1

6 0

2
3

1
6 0 1 1

6 0

0 0 1 0 0 0

0 0 1 0 −1 0




. (6.9)

Even though we now pass on approximations to y(x), hy′(x), h2y′′(x) from
step to step, the third of these is accurate only to within O(h3). This is
not a serious handicap because the consequence of this inaccuracy cancels

out to within O(h5) because y
[n]
3 appears only within the arguments of the

first and second scaled stage derivatives and because the first row of B is
orthogonal to the last column of U . Properties like this are referred to as
‘annihilation conditions’ and are crucial to the design of ARK methods.

This method cannot possibly possess RK stability but if we restore the
value of s to 4, this does become possible. The derivation of methods up to
order 4 is given in Butcher (1997b). The following example is based on the
abscissae c = [1, 1

2 , 1, 1]:



0 0 0 0 1 1 1
2

1
16 0 0 0 1 7

16
1
16

−1
4 2 0 0 1 −3

4 −1
4

0 2
3

1
6 0 1 1

6 0

0 2
3

1
6 0 1 1

6 0

0 0 0 1 0 0 0

−1
3 0 −2

3 2 0 −1 0




.

In a variable step-size implementation, when h changes to rh between steps

n − 1 and n, a simple rescaling of y
[n−1]
2 ≈ hy′(xn−1) by a factor r and

y
[n−1]
3 ≈ h2y′′(xn−1) by a factor r2 is adequate to preserve fourth-order

behaviour.
It is possible to find a five-stage fourth-order ARK method with the spe-

cial property that its error constants exactly vanish. Unfortunately, the
annihilation conditions satisfied by this method are not sufficient for this
method to act like a fifth-order method when implemented in a manner in
which variable step-size is dealt with by simple rescaling. However, it is
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possible to adjust things with negligible additional work so that variable h
fifth-order behaviour is achieved. Methods with this effectively fifth-order
behaviour are presented in Butcher and Moir (2003) and Rattenbury (2005).
Along with methods of effective order five, they present a means of breaking
the order barrier on explicit Runge–Kutta methods.

Although ARK methods were originally designed for non-stiff problems, it
has recently been found how to adapt them for the solution of stiff problems
(Butcher and Rattenbury 2005, Rattenbury 2005). Extensive numerical
testing shows this type of method to be very competitive for many stiff
problems.

6.3. DIMSIM methods

In the search for practical general linear methods a systematic family was
sought such that p = q = r = s and such that, if possible, they possessed
RK stability. Because the structure of the matrix A plays a crucial role
in the implementation cost in both sequential and parallel environments, it
seemed to be a good design choice to consider only lower triangular matrices
in this role. Furthermore there are often advantages in forcing the diagonal
elements to be equal and we will assume this to be the case. Methods de-
signed with these considerations in mind are referred to as a diagonally im-

plicit multi-stage integration method or DIMSIM (Butcher 1995). Because
applications are needed for both stiff and non-stiff problems and because we
will want to consider parallel as well as sequential architectures, four types
of methods, determined by the structure of A are considered and these are
summarized in Table 6.2 (overleaf).

Type 1 and 2 methods

The following is an example of a type 1 DIMSIM with p = q = r = s = 2:



0 0 1 0

2 0 0 1

5
4

1
4

1
2

1
2

3
4 −1

4
1
2

1
2




.

Even though this method has the same stability region as the classical
Runge–Kutta methods of Runge, it has advantages associated with stage
order q = 2. In particular, at no additional cost it yields interpolated re-
sults, suitable for dense output or application to certain delay differential
equations. Furthermore, asymptotically correct local error estimates are
available. Variable step-size, of course, presents complications which are
not present for the corresponding Runge–Kutta methods. However, there
are satisfactory ways round these complications.
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Table 6.2. The four DIMSIM types.

Structure of A Stiffness type Architecture

type 1




0 0 0 · · · 0
a21 0 0 · · · 0
a31 a32 0 · · · 0
...

...
...

...
as1 as2 as3 · · · 0




nonstiff sequential

type 2




λ 0 0 · · · 0
a21 λ 0 · · · 0
a31 a32 λ · · · 0
...

...
...

...
as1 as2 as3 · · · λ




stiff sequential

type 3




0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0




nonstiff parallel

type 4




λ 0 0 · · · 0
0 λ 0 · · · 0
0 0 λ · · · 0
...

...
...

...
0 0 0 · · · λ




stiff parallel

A similar method, but of order and stage order 3, has the coefficient
matrix (Butcher and Jackiewicz 1996)




0 0 0 1 0 0

1 0 0 0 1 0
1
4 1 0 0 0 1

5
4

1
3

1
6 −2

3
4
3

1
3

35
24 −1

3
1
8 −2

3
4
3

1
3

−17
12 0 1

12 −2
3

4
3

1
3




.

The construction of higher-order type 1 DIMSIMs becomes increasingly
complicated and numerical searches have to be made (Butcher and Jacki-
ewicz 2004, Butcher, Jackiewicz and Mittelmann 1997). However, order 4
methods have been found by Wright (2001).
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Type 2 methods with p = q = r = s = 2 are easy to find, for example, an
L-stable method:

[
A U
B V

]
=




2−
√

2
2 0 1 0

6+2
√

2
7

2−
√

2
2 0 1

73−34
√

2
28

4
√

2−5
4

3−
√

2
2

√
2−1
2

87−48
√

2
28

34
√

2−45
28

3−
√

2
2

√
2−1
2




.

For higher orders, L-stable type 2 methods are also increasingly difficult
to construct. However, the following method with p = q = r = s = 3 is
A-stable:

[
A U
B V

]
=




1
2 0 0 1 0 0
5
4

1
2 0 0 1 0

7
5

4
5

1
2 0 0 1

14
15

1
5 − 1

12
5
6

1
3 −1

6
17
20

7
60 −1

6
5
6

1
3 −1

6
23
30

2
15 − 1

20
5
6

1
3 −1

6




.

Type 3 and 4 methods

It is impossible to obtain RK stability for high-order methods in these fam-
ilies. However, reasonable stability regions are possible for type 3 methods,
as in the example with p = q = r = s = 2:

[
A U
B V

]
=




0 0 1 0

0 0 0 1

−3
8 −3

8 −3
4

7
4

−7
8

9
8 −3

4
7
4




.

The error constant for this method has magnitude 19
24 , which is abnormally

large, even allowing for any possible gain due to parallelism.
An example of a type 4 method also with p = q = r = s = 2 is

[
A U
B V

]
=




3−
√

3
2 0 1 0

0 3−
√

3
2 0 1

18−11
√

3
4 −12+7

√
3

4
3
2 −

√
3

√
3 − 1

2

22−13
√

3
4 −12+9

√
3

4
3
2 −

√
3

√
3 − 1

2




.

In this case the stability polynomial is
(

1 − z
3 −

√
3

2

)2

w2 −
(

1 − z
3 −

√
3

2

)
w +

1 −
√

3

2
z,
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and it is possible to verify that the method is A-stable and that it has zero
spectral radius at infinity.

An experimental implementation of methods of type 4 is reported in Singh
(1999).

7. Methods with inherent RK-stability

Even though DIMSIM methods of types 1 and 2 cannot be constructed in a
systematic manner, it is possible, by increasing both r and s, to p+1 = q+1
to derive methods which possess Runge–Kutta stability purely as a result
of their structure. These methods, which are said to possess inherent RK
stability, can be constructed in various ways but it seems most convenient
to use ‘doubly companion matrices’, and this is the approach we will use.

7.1. Doubly companion matrices

Consider a matrix of the form

X(α, β) =




−α1 −α2 −α3 · · · −αn−1 −αn − βn

1 0 0 · · · 0 −βn−1

0 1 0 · · · 0 −βn−2
...

...
...

...
...

0 0 0 · · · 0 −β2

0 0 0 · · · 1 −β1




,

where

α(z) = 1 + α1z + · · · + αnzn,

β(z) = 1 + β1z + · · · + βnzn.

If β(z) = 1, so that β1 = β2 = · · · = βn, or similarly if α(z) = 1, then the
characteristic polynomials can be found from

det(I − zX(α, 1)) = α(z),

det(I − zX(1, β)) = β(z).

We now consider the general case.

Theorem 7.1. The characteristic polynomial of X(α, β) is given by

det(I − zX(α, β)) = α(z)β(z) + O(zn+1). (7.1)

In (7.1), the effect of the term O(zn+1) is to simply remove from the
expanded product α(z)β(z) all terms with degree greater than n. If we
denote the usual characteristic polynomial det(zI −X(α, β)) by φ(z), then
(7.1) can be interpreted to mean

φ(z) =
[
z−n det(zI − X(α, 1)) det(zI − X(1, β))

]
,

where, in this formula, [·] means that negative powers of z are omitted.
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Proof. Define the vector-valued function P (z) by

P (z) =




...
z2 + β1z + β2

z + β1

1


. (7.2)

A simple calculation shows that

X(α, β)P (z) = zP (z) + φ(z)e1, (7.3)

showing that (λ, P (λ)) are an eigenvalue–eigenvector pair if φ(λ) = 0.

In applications of this result, we will be given β(z) and the characteristic
polynomial of X(α, β), and we will need to find α. In particular we will
need to consider the case det(I − zX(α, β)) = (1 − λz)n and we find, in
this case,

α(z) = (1 − λz)n/β(z) + O(zn+1).

It is possible to find explicit formulae for transformation matrices Ψ−1 and
Ψ so that Ψ−1XΨ is in Jordan canonical form. We will specialize this to the
case that X(α, β) has a one-point spectrum σ(X(α, β)) = {λ}. In addition
to P (z) given by (7.2), we will need the vector-valued function Q(z) given by

Q(z) =
[
1 z + α1 z2 + α1z + α2 · · ·

]
.

For the remainder of this paper, we will write X in place of X(α, β), unless
there is the possibility of ambiguity. For the trivial case in which all αi and
βi are zero, we will write J for this value of X.

Theorem 7.2. Define

Ψ =
[

1
(n−1)!P

(n−1)(λ) · · · 1
2!P

′′(λ) P ′(λ) P (λ)
]
,

then, if the characteristic polynomial of X is (z − λ)n,

Ψ−1XΨ = λI + J, (7.4)

and Ψ−1 is given by

Ψ−1 =




Q(λ)
Q′(λ)

1
2!Q

′′(λ)
...

1
(n−1)!Q

(n−1)(λ)




.
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Proof. From the Taylor expansion of (7.3) about z = λ, it is found that

XP (λ) = λP (λ),

X
1

i!
P (i) = λ

1

i!
P (i) +

1

(i − 1)!
P (i−1), i = 1, 2, . . . , n − 1,

and (7.4) follows. Similar formulae are found for Q(λ)X and 1
i!Q

(i)(λ)X
and the fact that both Ψ and the formula given for Ψ−1 are unit upper
triangular, completes the proof.

7.2. Formulation of IRKS methods

We will consider the construction of methods with p = q, and r = s = p+1.
Without loss of generality, we can assume that the starting method corre-
sponds to the evaluation of the scaled derivatives hiy(i)(x0), i = 0, 1, 2, . . . , p.
This means that the vector φ(z) in Theorem 4.3 is equal to Z given by

Z =




1
z
z2

...
zp




.

A consequence of this assumption is that V necessarily has the form

V =

[
1 vT

0 V̇

]
,

and stability requires that ρ(V̇ ) ≤ 1. We will want to go further than this
and actually assume that ρ(V̇ ) = 0.

Because we want to minimize computational cost, we will consider only
methods in which A has a lower triangular structure with constant
diagonals:

A =




λ 0 0 · · · 0
a21 λ 0 · · · 0
a31 a32 λ · · · 0
...

...
...

...
as1 as2 as3 · · · λ




.

For RK-stable methods, using A with this structure will result in a stability
function of the form

R(z) =
N(z)

(1 − λz)p+1
,
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where, because the order is p, N(z) is given by

N(z) = exp(z)(1 − λz)p+1 − constzp+1,

where const is the ‘error constant’. If np+1 is the coefficient of zp+1 in N(z)
then

np+1 =
1

(p + 1)!
− 1

p!

(
p + 1

1

)
λ+

1

(p − 1)!

(
p + 1

2

)
λ2−· · ·+(−λ)p+1−const.

In the construction of a specific method, the values of λ and either np+1 or
const are available as design choices. For example we may want to choose
λ to achieve A-stability and we might require that np+1 = 0 to obtain the
additional property of L-stability. For a non-stiff option, λ would be chosen
as zero, to obtain explicit methods, and const = np+1 − 1

(p+1)! would be

chosen to balance the requirements of accuracy and stability.
In the formulation of these new methods we will want to find the re-

maining (strictly lower triangular) elements of A and the elements of B as
starting points, and evaluate U and V from

U = C − ACK, (7.5)

V = E − BCK, (7.6)

where C, K and E have the meanings introduced in Section 4.4. It will be
a constraint on the choice of the elements in B to make sure that V has the
correct form.

Definition 7.3. A general linear method (A, U, B, V ) is said to possess
inherent Runge–Kutta stability (IRKS) if it satisfies the assumptions intro-
duced in Section 7.2 and there exists a doubly companion matrix X such
that α(z)β(z) = (1 − λz)p+1 + O(zs+1), and a vector ξT , such that

BA = XB, (7.7)

BU = XV − V X + e1ξ
T . (7.8)

The value of the vector ξT will be explored below.
The significance of Definition 7.3 is summed up in the following result.

Theorem 7.4. The characteristic polynomial of a general linear method
possessing the IRKS property has only a single nonzero eigenvalue.

Proof. The stability matrix is

M(z) = V + zB(I − zA)−1U,

and the characteristic polynomial of M(z) is the same as for the matrix
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formed by similarity, using the transformation matrix (I − zX). Evaluate
this as follows:

(I − zX)M(z)(I − zX)−1= (I − zX)(V + zB(I − zA)−1U)(I − zX)−1

= (I − zX)(V + z(I − zX)−1BU)(I − zX)−1

= (V − zXV + z(XV − V X + e1ξ
T ))(I − zX)−1

= V + e1ξ
T (I − zX)−1. (7.9)

This matrix has the same form as V except for the first row. Hence, p of
the zeros of the characteristic polynomial are equal to zero.

This result makes it possible to determine ξT . Write ξ(z) = ξ1z + ξ2z
2 +

· · · + ξp+1z
p+1 and use (7.9) to give

R(z) = 1 + zξT (I − zX)−1e1 (7.10)

=
det(I + z(e1ξ

T − X))

det(I − zX)
(7.11)

=
(α(z) + ξ(z))β(z)

α(z)β(z)
+ O(zp+2). (7.12)

Because R(z) = N(z)(1 − λz)−p−1, it follows that

ξ(z) = (N(z) − (1 − λz)p+1)β(z)−1 + O(zp+2),

and the coefficients in ξ(z) are found as the components of ξT .

7.3. Construction of specific methods

We first explore consequences of (7.7) and (7.8). Substitute U and V from
(7.5) and (7.6) into (7.8) and use (7.7) to find:

BC(I − KX) = XE − EX + e1ξ
T . (7.13)

It is found that both I−KX and XE−EX +e1ξ
T are zero except for their

final columns. Deleting the irrelevant columns of (7.13) we find, after some
manipulation,

BC




βp

βp−1

...

β1

1




=




1
(p+1)! +

∑p
i=1

1
(p+1−i)!βi − const

1
p! +

∑p−1
i=1

1
(p−i)!βi

...
1
2! + 1

1!β1

1
1!




. (7.14)

Define B̃ = Ψ−1B and rewrite (7.7) in the form

B̃(A − λI) = JB̃.
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It follows from this equation that B̃ is lower triangular and we can write
(7.14) in the form

B̃C




βp

βp−1

...

β1

1




= Ψ−1




1
(p+1)! +

∑p
i=1

1
(p+1−i)!βi − const

1
p! +

∑p−1
i=1

1
(p−i)!βi

...
1
2! + 1

1!β1

1
1!




. (7.15)

The condition that ρ(V̇ ) = 0 can be written as a linear constraint on B and

therefore of B̃.
The construction of methods now consists of the following steps.

(i) Select suitable values of λ, c1, . . . , cp+1, β1, . . . , βp and const.

(ii) Find α1, . . . , αp+1 from

α(z) = (1 − λz)p+1/β(z) + O(zp+2).

(iii) Construct X, Ψ and other related matrices.

(iv) Choose B̃ so that (7.15) and so that ρ(V̇ ) = 0.

(v) Find the coefficient matrices using the formulae

B = ΨB̃,

A = B−1XB,

U = C − ACK,

V = E − BCK.

To illustrate this procedure we construct an A-stable method of order 3.
In step (i) we make the following choices.

• λ = 1
2 . This was chosen for simplicity, taking into account the need for

A-stable behaviour and for a reasonably small absolute error constant.
Assuming that L-stability is sought, then the error constant is given by

const = λ4 − 4λ3 + 3λ2 − 2

3
λ +

1

24
,

and is shown in Figure 7.1 for the interval [0.223647801, 0.572816062],
which is approximately the set of λ values yielding A-stable methods.

• The stage abscissae are chosen as [13 , 2
3 , 1, 1]. This choice is obviously

chosen for simplicity and convenience. By imposing an additional con-
straint, it is possible to force the first row of B to be identical to the
last row of A and at the same time forcing the second row of B to be
[0, 0, 0, 1]. This enables the method to have properties similar to the
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0.3 0.4 0.5 λ
0.000

0.025

const

Figure 7.1. Error constant for third-order method.

so-called FSAL Runge–Kutta methods. In particular, y
[n]
2 = hf(y

[n]
1 )

so that in step number n + 1, we have available what is effectively a
further stage derivative for use in interpolation and similar purposes.

• The values of [β1, β2, β3] are chosen as [−1, 1
3 , 0]. The zero value of β3

is a consequence of the FSAL condition whereas β1 and β2 are chosen
to ensure that the coefficients given as elements of [A, U, B, V ] have
reasonably small magnitudes and are reasonably simple numbers.

• Because we want L-stability, we choose const as we have described
above.

There are choices to be made in how step (iv) is to be carried out. In the
present construction, we have forced V̇ to be strictly lower triangular.

The coefficients for the method described under these choices are given by

[
A U
B V

]
=




1
2 0 0 0 1 −1

6 −1
9 − 7

324
36
295

1
2 0 0 1 79

1770 − 403
2655 − 1637

23895

−705
472

177
160

1
2 0 1 8377

9440 −1131
4720 − 581

2360
39
160

15
128

5
24

1
2 1 − 133

1920 −353
960 −109

480

39
160

15
128

5
24

1
2 1 − 133

1920 −353
960 −109

480

0 0 0 1 0 0 0 0

−45
2 18 5

2 −6 0 8 0 0
171
4 −531

16 0 12 0 −345
16 −33

8 0




.

(7.16)

As a start towards approximating the underlying one-step method and find-
ing an improved starting method, we evaluate the asymptotic error, for step
number n, in the sense of Figure 4.1. This is found to be




− 241
2880h4y(4)(xn) + O(h5)

O(h5)
1
3h4y(4)(xn) + O(h5)
3
8h4y(4)(xn) + O(h5)


.
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Denote this by φ and carry out the decomposition in (4.6) to obtain
a solution

ǫ =
1

48
h4y(4)(xn) + O(h5), δ =




0
O(h5)

1
3h4y(4)(xn) + O(h5)

−h4y(4)(xn) + O(h5)


.

Note that the coefficients of h4y(4)(xn), in the last three components of δ, are
equal to β3, β2, β1, an example of a result by Wright (2002b). We can now
construct the underlying one-step method and the corresponding modified
starting method, to within O(h5). For the underlying one-step method,
with input y(xn−1), simply evaluate the Taylor expansion to within this
accuracy, with ǫ subtracted from it. The starting method is now a modified
version of the Nordsieck vector with δ subtracted from it. Thus,

y[n−1] =




y(xn−1)

hy′(xn−1) + O(h5)

h2y′′(xn−1) − 1
3h4y(4)(xn−1) + O(h5)

h3y′′′(xn−1) + h4y(4)(xn−1) + O(h5)


.

In Section 7.4, we will discuss the use of the modified starting method
in the estimation of error information. However, the very existence of an
underlying one-step method hinges on the use of constant step-size. Two
approaches for dealing with variable step-size have been considered (Butcher
and Jackiewicz 2002, 2003). In this paper we will emphasize the second of
these, which is to ‘correct’ the drift away from the correct starting approx-
imation caused by unmodified Nordsieck scaling.

7.4. Implementation issues

In the practical implementation of any method, or family of methods, it
is desirable to have available an asymptotically correct error estimator to-
gether with a mechanism for adjusting the step-size. Most well-known meth-
ods have these but usually at a computational cost. Our aim in the design
of general linear methods is to keep any overhead costs as low as possible.
For local error estimation, the secret seems to be to insist on methods with
high stage order, and for variation of step-size, the essential idea is to use
the Nordsieck representation of the data passed between steps. However, a
simple rescaling of the Nordsieck vector by powers of the step-size ratio is
not always a satisfactory way of adjusting for a new step-size.

There are two reasons for this. The first is that a method which might
exhibit stable behaviour for constant step-size might act unstably when the
step-size is varied, especially if large variations are permitted. The second
is that we will not only want to estimate errors for a method currently in
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use, but we will also want to estimate errors for an alternative method of
higher order, which is in contention as a possibly more efficient method for
succeeding steps.

This leads to the idea of a ‘scale and modify’ scheme for step-size control.
Suppose that, at the end of step n, a step-size change h �→ rh is to be made.
Also assume that in the underlying one-step method, the quantities being
approximated at step number n are given by




y(xn) + O(hp+2)

hy′(xn) − δ1h
p+1y(p+1)(xn) + O(hp+2)

h2y′′(xn) − δ2h
p+1y(p+1)(xn) + O(hp+2)

...

hpy(p)(xn) − δph
p+1y(p+1)(xn) + O(hp+2)




. (7.17)

When this quantity is computed as the output to step n and an unmodified
Nordsieck scaling is performed, we have as intended input for step number
n + 1, the quantities




y(xn) + O(hp+2)

(rh)y′(xn) − rδ1h
p+1y(p+1)(xn) + O(hp+2)

(rh)2y′′(xn) − r2δ2h
p+1y(p+1)(xn) + O(hp+2)

...

(rh)py(p)(xn) − rpδph
p+1y(p+1)(xn) + O(hp+2)




,

which differs from what is required by




O(hp+2)

(r − rp+1)δ1h
p+1y(p+1)(xn) + O(hp+2)

(r2 − rp+1)δ2h
p+1y(p+1)(xn) + O(hp+2)

...

(rp − rp+1)δph
p+1y(p+1)(xn) + O(hp+2)




.

The scale and modify scheme requires us to add to the scaled Nordsieck
vector, an approximation to this quantity. However, we have a choice of
possible approximations to hp+1y(p+1)(xn) + O(hp+2) and the choice we
make, which might differ from component to component, needs to take
account of stability requirements.

We will illustrate how this is done using the example method (7.16). By
matching Taylor expansions, we find a family of linear combinations of var-
ious quantities which give asymptotically correct approximations to h4y(4).
These quantities are hFi = hy′(xn−1 + hci) + O(h5), i = 1, 2, 3, 4, together
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with y
[n−1]
2 = hy′(xn−1) + O(h5), y

[n−1]
3 = h2y′′(xn−1) − 1

3h4y(4)(xn−1) +

O(h5). Note that we do not involve y
[n−1]
4 in the error estimate because we

want the modified and scaled B and V matrices to have an unchanged spar-
sity pattern. This will guarantee a variable step analogue of zero stability.

We have two free parameters, which we denote by C2, C3 (C1 will be
introduced below) and the suggested approximation is

(81 + 18C3)hF1 + (−81 − 45
2 C3)hF2 + (27 + 8C3 − C2)hF3 + C2hF4

+ (−27 − 7
2C3)y

[n−1]
2 + C3y

[n−1]
3

= h4y(4)(xn) + O(h5).

We use this approximation in two places, in the modification of the scaled

y
[n]
3 , with C3 replaced by zero and C2 replaced by C1, and in the modification

to the scaled y
[n]
4 . If we write B(r) and V (r) for the scaled and modified

versions of B and V respectively, then y[n], as input to step number n + 1
with step-size rh, is given in a modified version of (3.1),

y[n] = B(r)hF + V (r)y[n−1],

where B(r) and V (r) are each given as the sum of the simply scaled version
plus the modifier terms:

B(r) =




39
160

15
128

5
24

1
2

0 0 0 r

−45
2 r2 8r2 5

2r2 −6r2

171
4 r3 −531

16 r3 0 12r3




+ diag
(
0, 0, r2−r4

3 ,−(r3−r4)
)



0 0 0 0
0 0 0 0
81 −81 27 − C1 C1

81+18C3 −81−45
2 C3 27+8C3−C2 C2


,

V (r) =




1 − 133
1920 −353

960 −109
480

0 0 0 0

0 8r2 0 0

0 −345
16 r3 −33

8 r3 0




+ diag
(
0, 0, r2−r4

3 ,−(r3 − r4)
)



0 0 0 0
0 0 0 0
0 −27 0 0

0 −27 − 7
2C3 C3 0


.

For arbitrary (but bounded) step-size ratios, the products of matrices
V (r) over many steps acts in a stable manner, simply because these are
all strictly lower triangular. However, we will also seek stable behaviour
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for infinitely stiff problems. That is, we will want to form products of
matrices like

V (r) − B(r)A−1U. (7.18)

Although we have described C1, C2 and C3 as constants, there is no reason
why they should not depend on r. If we choose C3 = −2.6 and define C1(r)
and C2(r) so that the characteristic equation of (7.18) has only a single non-
zero root, then this root is bounded in magnitude by 1 at least for r ∈ [12 , 2].
This is, of course, not sufficient for acceptable variable step stability for stiff
problems, but is at least an encouragement to explore this aspect of L-stable
general linear methods further.

The availability of asymptotically correct error estimators, and the vari-
able step-size adjustments we have described, provides all the equipment
that is needed for reliable step-size control. However, we also want variable
order. Although we will not consider adjustments to Nordsieck vector ap-
proximations when order is increased, we will discuss as the final detail on
implementation, the estimation in step number n of hp+2y(p+2)(xn), because
the asymptotic error of a method of order p + 1 will be proportional to this
quantity.

The key to estimating hp+2y(p+2)(xn) is the fact that

hFi = hy′(xn−1 + hci) + O(hp+2), i = 1, 2, . . . , p + 1. (7.19)

We will consider only methods which, like the example method (7.16), have
‘Property F’, otherwise known as the FSAL property.

Definition 7.5. A general linear method with the IRKS property has
Property F if

(i) cs = 1,

(ii) b1j = asj , j = 1, 2, . . . , s,

(iii) v1j = usj , j = 1, 2, . . . , r,

(iv) b2j = δsj , j = 1, 2, . . . , s,

(v) v2j = 0, j = 1, 2, . . . , r.

For a method with Property F, we effectively have an additional accurate
derivative approximation, hF0 = hy′(x0 + hc0) + O(hp+2), where c0 = 0.
Hence, we will regard (7.19) as holding for i = 0, 1, . . . , p + 1.

The FSAL property, on which Definition 7.5 is modelled, was made pop-
ular in the design of Runge–Kutta methods, by the work of Dormand and
Prince (1980) because it gives an additional apparently free derivative ap-
proximation to widen options for error estimators. This is exactly how we
will use Property F. For the remainder of this section we will assume this
property, just as we will always assume that the scale and multiply technique
is used when the step-size varies.
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Suppose that the error coefficients δ1, δ2, are as in (7.17). Then the errors
introduced into the stage values are

y(xn−1 + hci) − h

p+1∑

j=1

aijy
′(xn−1 + hcj)

−
p+1∑

j=1

uij

(
hj−1y(j−1) − δj−1h

p+1y(p+1)(xn−1)
)
,

i = 1, 2, . . . , p + 1.

By Taylor’s theorem this equals

σih
p+1y(p+1)y(xn−1) + O(hp+2),

where

σ = 1
(p+1)!c

p+1 − 1
p!Acp + Uδ,

and we find, for the corresponding error in the stage derivatives,

σih
p+2 ∂f

∂y
y(p+1)(xn−1) + O(hp+3).

If we contemplate using linear combinations of hFi, i = 0, 1, . . . , p + 1 to
estimate quantities related to errors, to within O(hp+3), we need to make
use of the matrix

L =




σ0 1 c0
1
2c2

0 · · · 1
p!c

p
0

1
(p+1)!c

p+1
0

σ1 1 c1
1
2c2

1 · · · 1
p!c

p
1

1
(p+1)!c

p+1
1

...
...

...
...

...
...

σp+1 1 cp+1
1
2c2

p+1 · · · 1
p!c

p
p+1

1
(p+1)!c

p+1
p+1




.

We distinguish three cases:

(i) the c components are distinct and the first p + 2 columns of L are
linearly independent,

(ii) the c components are distinct and the first p + 2 columns of L are
linearly dependent,

(iii) cp = cp+1 = 1 and σp 	= σp+1.

A final case, in which cp = 1 but σp = σp+1, will not be explored because
there does not seem to be a simple error estimator of the type we want in
this case. Note that the example method (7.16) is in case (iii).

In case (i), construct a coefficient vector ξT = [ξ0, ξ1, . . . , ξp+1] such that

ξT L = ep+2 + θep+3,
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so that
∑

i=0 ξihFi equals

Ψn = hp+1y(p+1)(xn−1) + θhp+2y(p+2)(xn−1) + O(hp+3)

= hp+1y(p+1)(xn−1 + hθ) + O(hp+3).

If the step-size used in step number n− 1 was r−1h, then an asymptotically
correct estimate of hp+2y(p+2)(xn−1) can be found from

r
1+θ(r−1)

(
Ψn − rp+1Ψn−1

)
.

In cases (ii), it is possible to give in a single step an approximation
∑

i=0

ξihFi = hp+2y(p+2)(xn−1) + O(hp+3)

by choosing ξT to satisfy

ξT L = ep+3.

Case (iii) is similar to case (i) and we will illustrate this using the example
method (7.16). For this method L is found to be




0 1 0 0 0 0

− 35
1944 1 1

3
1
18

1
162

1
1944

10
14337 1 2

3
2
9

4
81

2
243

187
2360 1 1 1

2
1
6

1
24

1
48 1 1 1

2
1
6

1
24




,

leading to the approximation

− 27y
[n−1]
2 + 81hF1 − 81hF2 + 13485

827 hF3 + 8844
827 hF4

≈ h4y(4)(xn−1) + 1
2h5y(5)(xn−1).

The estimation of local truncation errors is discussed in Butcher and Pod-
haisky (2006); this includes the estimation of hp+2y(p+2) using the method
described in this section.

8. Order and stability barriers

This discussion is relevant to multi-derivative methods, otherwise known
as Obreshkov methods, as well as to general linear methods. The essential
question concerns polynomial functions in two complex variables and the
extent to which they can represent high-order approximations to exp and
at the same time represent A-stable behaviour.

Given positive integers r, s, we consider a polynomial function of two
complex variables Φ(w, z), which has degree r in w and degree s in z. Given
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a general linear method (A, U, B, V ), the stability matrix is

M(z) = V + zB(I − zA)−1U

and its linear stability properties are defined in terms of the characteristic
polynomial

det(wI − M(z)). (8.1)

Only when A is nilpotent, such as in an explicit method, will this expression
be a polynomial. It is, however, always a polynomial in w and z divided by
a polynomial in z. We can define Φ for this method by using the numerator
of (8.1).

Two special cases correspond to classical methods. If s = 1 we will write

Φ(w, z) = ρ(w) − zσ(w),

using the standard notation for linear multistep methods. On the other
hand, if r = 1 then we will write

Φ(w, z) = wD(z) − N(z),

corresponding to the stability function R(z) = N(z)/D(z) of a Runge–Kutta
method.

As much as possible, we will distance ourselves from an actual method
but will consider properties of Φ in its own right.

Definition 8.1. A stability function has order p if

Φ(exp(z), z) = O(zp+1).

Note that this definition does not necessarily coincide with the order of
the underlying general linear method. However, the actual order of the
method cannot exceed p in Definition 8.1.

Definition 8.2. A stability function is A-stable if for every complex num-
bers z such that Re z ≤ 0,

(i) if w satisfies Φ(w, z) = 0, then |w| ≤ 1,

(ii) if w satisfies Φ(w, z) = ∂
∂w

Φ(w, z) = 0, then |w| < 1.

This definition is not the usual one. However, our aim will be to un-
derstand the conflict between order and stable behaviour for stiff problems
and we want consistent conclusions which reasonably well make it possible
to decide between suitable and unsuitable methods. Consider the approxi-
mation

Φ(w, z) =
(
1 − 5

8z + 1
8z2

)
w2 − 2w + 1 + 5

8z + 1
8z2.

According to Definition 8.1, this method has order 5 but it is not possible
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in a numerical computation to realize the corresponding accuracy. On the
other hand, according to Definition 8.2 it is not A-stable even though, for
every z satisfying Re z < 0, the corresponding w values are in the open
unit disc. Hence, its properties are consistent with Theorem 8.11, which it
should be.

For a particular approximation we might wish to refer to the polynomials
in z arising as coefficients of various powers of w. Write

Φ(w, z) = P0(z)wr + P1(z)wr−1 + · · · + Pr−1(z)w + Pr(z). (8.2)

We will refer to the zeros of P0(z) as the ‘poles of Φ’ and the zeros of Pr as
the ‘zeros of Φ’.

Theorem 8.3. The approximation Φ is A-stable if and only if

(i) Φ has no poles in the left half-plane,

(ii) there do not exist complex numbers w and z such that Re z = 0, |w| > 1
and Φ(w, z) = 0,

(iii) there do not exist complex numbers w and z such that Re z = 0, |w| = 1
and Φ(w, z) = ∂

∂w
Φ(w, z) = 0.

Proof. (i) is necessary because if z is near a pole there are arbitrarily high
values of w satisfying Φ(w, z) = 0. (ii) and (iii) are necessary because the
imaginary axis is a subset of the closed left half-plane. Sufficiency follows
from the maximum-modulus theorem.

Associated with a given approximation Φ is the Riemann surface defined
by Φ(ŵ exp(z), z) = 0. The use of this ‘relative stability function’ was made
famous by its use in the theory of order stars. We will use the closely related
‘order arrows’ in this paper to achieve many of the same goals.

In the search for A-stable methods of high order, we will consider (8.2)
with the degrees

ni = deg(Pi), i = 0, 1, 2, . . . , r, (8.3)

specified and the coefficients chosen to maximize the order of the approxi-
mation.

Definition 8.4. Given a sequence of degrees, ni ≥ −1, i = 0, 1, . . . , r
a generalized Padé approximation (to exp) is a sequence of polynomials
P0, P1, . . . , Pr, satisfying (8.3) with order p =

∑r
i=0 ni + r − 1.

We will always assume that n0 ≥ 0 and we will usually assume that nr ≥ 0
(otherwise, r could be reduced to r−1). In the interpretation Definition 8.4,
we will regard a polynomial of degree −1 as being the zero polynomial.
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8.1. Padé approximations

The Padé approximations, that is the generalized Padé approximations in
the case r = 1, arise as the stability functions of certain implicit Runge–
Kutta methods. If n0 the degree of D, is written as d and n1, the degree of
N is written as n, then the (d, n) Padé approximation is given by

D(z) exp(z) − N(z) = (−1)d C

(n + d + 1)!
zn+d+1 + O(zn+d+2), (8.4)

where the constant C is an arbitrary nonzero scale factor.

Theorem 8.5. The polynomials N and D in (8.4) are given by

N(z) = C
n∑

i=0

zn−i

(n − i)!

(
d + i

i

)
, (8.5)

D(z) = C
d∑

i=0

(−z)d−i

(d − i)!

(
n + i

i

)
. (8.6)

Proof. Operate on (8.4) by ( d
dz

)n+1 to obtain

exp(z)(1 + d
dz

)n+1D(z) = (−1)dC
zd

d!
+ O(zd+1).

Multiply by exp(−z) and the right-hand side is unchanged. However, the
left-hand side is a polynomial of degree exactly d and the O(zd+1) can be
omitted. It now follows that

D(z) = (−1)dC(1 + d
dz

)−(n+1) z
d

d!
,

and (8.6) follows. Similarly, multiply (8.4) by exp(−z) and operate on the
resulting equation by ( d

dz
)d+1, leading to (8.5).

A convenient choice of C is n!d!/(n + d)! leading to formulae in which
N(0) = D(0) = 1:

N(z) =
n∑

i=0

n!(n + d − i)!

(n − i)!(n + d)!i!
zi, (8.7)

D(z) =
d∑

i=0

d!(n + d − i)!

(d − i)!(n + d)!i!
(−z)i. (8.8)

A partial table of Padé approximations to the exponential function is
given in Table 8.1 (overleaf).

Recurrence relations

We will write Vdn(z) to denote the two-dimensional vector whose first and
second components are Ndn(z) and Ddn(z), respectively. Many relationships
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Table 8.1. Padé approximations to exp of degrees [n, d].

n
d 0 1 2 3

0 1
1

1+z
1

1+z+ 1

2
z2

1

1+z+ 1

2
z2+ 1

6
z3

1

1 1
1−z

1+ 1

2
z

1− 1

2
z

1+ 2

3
z+ 1

6
z2

1− 1

3
z

1+ 3

4
z+ 1

4
z2+ 1

24
z3

1− 1

4
z

2 1
1−z+ 1

2
z2

1+ 1

3
z

1− 2

3
z+ 1

6
z2

1+ 1

2
z+ 1

12
z2

1− 1

2
z+ 1

12
z2

1+ 3

5
z+ 3

20
z2+ 1

60
z3

1− 2

5
z+ 1

20
z2

3 1
1−z+ 1

2
z2−

1

6
z3

1+ 1

4
z

1− 3

4
z+ 1

4
z2−

1

24
z3

1+ 2

5
z+ 1

20
z2

1− 3

5
z+ 3

20
z2−

1

60
z3

1+ 1

2
z+ 1

10
z2+ 1

120
z3

1− 1

2
z+ 1

10
z2−

1

120
z3

exist between adjacent members of the Padé table. We will here consider
just one of these because of its application in this work.

Theorem 8.6. If n ≥ 2 then

Vn,n(z) = Vn−1,n−1(z) + z2

4(2n−1)(2n−3)Vn−2,n−2(z).

Proof. Because Dnn(z) = Nnn(−z), it follows that Nnn(z) exp(−z/2) −
exp(z/2)Dnn(z) is an odd function; combining this with the fact that

Nnn(z)
Dnn(z) = exp(z) + O(z2n+1),

we find
[
exp(−z/2) − exp(z/2)

]
Vnn(z) = (−1)n+1n!2

(2n)!(2n+1)!z
2n+1 + O(z2n+3).

Hence,
[
exp(−z/2) − exp(z/2)

] (
Vn−1,n−1(z) + z2

4(2n−1)(2n−3)Vn−2,n−2(z)
)

= (−1)nθz2n−1 + O(z2n+1),

where

θ = − 1
4(2n−1)(2n−3)

(n−2)!2

(2n−4)!(2n−3)! + (n−1)!2

(2n−2)!(2n−1)! = 0.

It follows that Vn−1,n−1(z)+ z2

4(2n−1)(2n−3)Vn−2,n−2(z) is the unique, correctly

scaled vector Vnn.

A-stable Padé approximations

The A-stable members of the Padé table for the exponential functions are
those for which d−n ∈ {0, 1, 2}. The fact that approximations with d > n+2
cannot be A-stable will be proved in Theorem 8.9 and the corresponding
result for d < n is covered by the following result.

Theorem 8.7. A Padé approximation to exp with d > n is not A-stable.
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Proof. For |z| large, we find from (8.7) and (8.8)
∣∣∣∣
N(z)

D(z)

∣∣∣∣ =
d!

n!
|z|n−d + O(|z|n−d−1),

and is greater than 1 for z ∈ C
− with |z| sufficiently large.

In remains to prove the result.

Theorem 8.8. If d − n ∈ {0, 1, 2}, the [d, n] Padé approximation to exp
is A-stable.

Proof. In the case n = d, let ζn = Dnn(z)/zDn−1,n−1(z), where Re (z) < 0
and deduce from the second component of (8.6) that

ζn =
1

z
+

1

4(2n − 1)(2n − 3)ζn−1
.

Starting from ζ1 = z−1 − 1
2 , we deduce that each of ζ1, ζ2, . . . is in the

left half-plane, where we use the fact that the inverse of a number in the
left half-plane, and the sum of two such numbers, are each also in the left
half-plane. It follows that ζn is not zero and neither is

Dnn(z) = znζnζn−1 · · · ζ1.

Since Dnn has no zeros in the left half-plane, we use the maximum modulus
principle to deduce that |Nnnz/Dnn(z)| is bounded by 1, because the value
is achieved exactly on the imaginary axis.

In the case n = d − 1, define the approximation Ñ(z)/D̃(z) as the com-
ponents of the vector

Ṽ (z) = (1 − t)Vnn(z) + tVn,n−1(z),

where the homotopy variable t moves from 0 (diagonal approximation) to

1 (sub-diagonal approximation). Because Ñ(z) = exp(z)D̃(z) + O(z2n) it
follows that

|D̃(iy)|2 − |Ñ(iy)|2 = C(t)y2n,

where C(t) > 0 for t > 0. Hence, D(iy) > 0. As t increases in [0, 1], the

zeros of D̃(z) move continuously and can never cross the imaginary axis,
because D(iy) never vanishes.

In the case n = d − 2 carry out a similar homotopy from Vn,n−1(z) to
Vn,n−2(z) and obtain a similar result.

8.2. Quadratic Padé approximations

The derivation of Padé approximations we have given can be easily gener-
alized to the quadratic case r = 2.
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Table 8.2. Some quadratic Padé approximations to exp.

p [n0, n1, n2] P0(z) P1(z) P2(z)

2 [1, 0, 0] 1 − 2
3z − 4

3
1
3

3 [2, 0, 0] 1 − 6
7z + 2

7z2 − 8
7

1
7

4 [2, 1, 0] 1 − 10
17z + 2

17z2 − 16
17 − 8

17z − 1
17

4 [2, 0, 1] 1 − 8
11z + 2

11z2 − 16
11

5
11 + 2

11z

4 [3, 0, 0] 1 − 14
15z + 2

5z2 − 4
45z3 − 16

15
1
15

5 [3, 1, 0] 1 − 34
49z + 10

49z2 − 4
147z3 − 48

49 − 16
49z − 1

49

5 [3, 0, 1] 1 − 11
13z + 4

13z2 − 2
39z3 − 16

13
3
13 + 1

13z

5 [4, 0, 0] 1 − 30
31z + 14

31z2 − 4
31z3 + 2

93z4 − 32
31

1
31

Suppose n0 ≥ 0, n1, n2 ≥ −1, min(n1, n2) ≥ 0 and

Φ(w, z) = w2P0(z) + wP1(z) + P2(z), deg(Pi) = ni, i = 0, 1, 2,

and that Φ(exp(z), z) = O(zp+1), with p = n0 + n1 + n2 + 1.
Assume for some C

exp(2z)P0(z) + exp(z)P1(z) + P2(z) = C zp+1

(p+1)! + O(zp+2).

To find P0, multiply by exp(−2z) and apply (1 + d
dz

)n1+1(2 + d
dz

)n2+1 to
both sides. The result is

(
1 + d

dz

)n1+1(
2 + d

dz

)n2+1
P0(z) = C zn0

n0! ,

where O(zn0+1) is omitted on the right-hand side because the left-hand side
is a polynomial of degree n0. Find similar expressions involving P1 and P2

and rearrange to obtain

P0(z) = C
(
1 + d

dz

)−(n1+1)(
2 + d

dz

)−(n2+1) zn0

n0! ,

P1(z) = C
(
−1 + d

dz

)−(n0+1)(
1 + d

dz

)−(n2+1) zn1

n1!
,

P2(z) = C
(
−2 + d

dz

)−(n0+1)(−1 + d
dz

)−(n1+1) zn2

n2! .

A number of quadratic approximations are given in Table 8.2.

8.3. Order stars and order arrows

The famous theory of order stars (Wanner, Hairer and Nørsett 1978) was
introduced as a means of settling some outstanding open questions. The idea
is based on the observation that a rational approximation R(z)=N(z)/D(z)
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Figure 8.1. Order star for [2, 1] Padé approximation.

(N and D having no common factor) of order p is A-stable if and only if

(i) D has no zeros in the open left half-plane,

and

(ii) |R(z)| ≤ 1, when Re (z) = 0,

and the further observation that the criteria still hold if, in (ii), R(z) is
replaced by R(z) exp(−z).

The advantage of the modified form of this criterion is that the behaviour
of R(z) exp(−z) is known in considerable detail when |z| is small. In fact,

R(z) exp(−z) = 1 − Czp+1 + O(zp+2),

where the error constant C is defined by R(z) = exp(z)−Czp+1 +O(zp+2).
Write z = r exp tθ and we find

|R(z) exp(−z)| = 1 − Crp+1 cos((p + 1)θ) + O(rp+2).

For arguments θ such that C cos((p + 1)θ) < 0, R(z) exp(−z) > 1 for suf-
ficiently small |z|, and conversely, R(z) exp(−z) < 1 if C cos((p + 1)θ) > 0
and |z| is sufficiently small.

The order star corresponding to this approximation is defined as the set
of points in the complex plane such that |R(z) exp(−z)| > 1 and the dual
star is defined as the set of points for which |R(z) exp(−z)| < 1. We have
seen which points near zero lie in each of these sets. The components of the
order star (respectively, dual star) close to zero are referred to as fingers
(respectively, dual fingers). Further details are available in Wanner, Hairer
and Nørsett (1978) and in other expositions of the theory.

The criterion for A-stability, that |R(z) exp(−z)| ≤ 1 on the imaginary
axis, translates, in order star language, to the requirement that a finger
cannot intersect the imaginary axis. Two examples are presented; first
Figure 8.1 for the [2, 1] Padé approximation. Here two ‘bounded fingers’
enclose the poles and a single ‘bounded dual finger’ encloses the zero. The
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Figure 8.2. Order star for [4, 1] Padé approximation.

unbounded finger and the unbounded dual finger divide the parts of the
complex plane distant from zero into two parts. The underlying approx-
imation is A-stable because the two poles are in the right half-plane and
there is no intersection between the order star (the shaded region) and the
imaginary axis.

In contrast, we present Figure 8.2 for the [4, 1] Padé approximation. This
is not A-stable, because in this case the order star intersects the imaginary
axis. This is known to be the case because there are too many bounded
fingers containing poles for all of them to lie entirely in the right half-plane.

As an alternative to the order star technique, ‘order arrows’ have been
proposed. For an approximation R(z) = N(z)/D(z), this also uses the
modified function formed by dividing by exp(z), but considers the set of
points in the complex plane for which R(z) exp(−z) is real and positive.
These emanate from zero as ‘up-arrows’ which terminate at poles or at
−∞, or down-arrows which terminate at zeros or at +∞. A-stability does
not hold if an up-arrow leaves zero (with magnitude 1) and either crosses the
imaginary axis or is tangential to it. We present the order star diagrams for
the two approximations already considered. First, Figure 8.3 corresponds
to the A-stable approximation [2, 1]. In contrast, the arrow diagram for the
[4, 1] approximation is shown in Figure 8.4. This approximation cannot be
A-stable for the following reasons.

(i) Exactly four up-arrows terminate at poles, otherwise some up-arrows
would cross down-arrows.

(ii) The angle subtended by the tangents at zero to two of these up-arrows
is at least 4 × π/4 = π.
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Figure 8.3. Order arrows for [2, 1] Padé approximation.

Figure 8.4. Order arrows for [4, 1] Padé approximation.

(iii) Hence, at least one up-arrow is either tangential to the imaginary axis
or else it emanates into the left half-plane and terminates at a pole.

(iv) Hence, there is either a pole in the left half-plane or this up-arrow
crosses the imaginary axis before terminating at a pole in the right
half-plane.

If we define order arrows from their basic property that Φ(ŵ exp(z), z) = 0
with ŵ real and positive, then, in addition to those arrows emanating from
zero, there is an infinite family of arrows spaced approximately 2πi apart,
as illustrated in Figure 8.5, for the [1, 0] case,

Φ(w, z) = w(1 − z) − 1.
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Figure 8.5. Order arrows for [1, 0] Padé approximation,
together with magnified detail near z = 0.

8.4. The Ehle barrier

The result formerly known as the Ehle conjecture was one of the first suc-
cesses of the order star theory (Wanner, Hairer and Nørsett 1978). Here we
will present an alternative proof using order arrows.

Theorem 8.9. Let R(z) = N(z)/D(z) denote the [d, n] Padé approxima-
tion to exp. Then, if d > n + 2, this approximation is not A-stable.

Proof. There are n+d+1 up-arrows emanating from zero, alternating with
n+d+1 down-arrows. Suppose that d̃ up-arrows terminate at poles so that
(n + d + 1) − d̃ up-arrows terminate at −∞. Suppose that ñ down-arrows

terminate at zeros. These must fit into the (n+ d+1)− d̃− 1 gaps between
the up-arrows which terminate at −∞. Hence

ñ + d̃ ≤ n + d.

Because d̃ ≤ d and ñ ≤ n it follows that d̃ = d and ñ = n. Since d up-
arrows terminate at poles, there must be at least one up-arrow emanating
from zero with tangent making an angle to the the positive real axis at least
equal to d−1

2 × 2π/(n + d + 1). For A-stability either (i) this angle must
me less than π/2 or (ii) at least one of the up-arrows terminating at a pole
emanates from zero with an argument greater than π/2. Hence, in case (i),

d − 1

2
· 2π

n + d + 1
<

π

2
,

implying 2d − 2 < n + d + 1 so that d < n + 3. In case (ii), the up-arrow
referred to either terminates at a pole in the left half-plane, or crosses the
imaginary axis, each of which is impossible.
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8.5. Order arrows on Riemann surfaces

To generalize the use of relative stability regions, by inserting the factor
exp(−z) in R(z) exp(−z), we consider the modification of a generalized ap-

proximation Φ(w, z) by considering the function Φ̂ defined by

Φ̂(ŵ, z) = Φ(ŵ exp(z), z). (8.9)

The order star theory for this type of generalization is developed in Wanner,
Hairer and Nørsett (1978) and we will discuss here only the order arrow
approach.

The Riemann surface for (8.9) is the subset of C×C for which Φ̂(ŵ, z) =
0. It is usual to think of the Riemann surface as a multivalued function
for which values of z are the arguments, and the corresponding values of
ŵ which satisfy the equation Φ̂(ŵ, z) = 0 are the values of this function.

Except at isolated points at which (∂Φ̂/∂ŵ) = 0, an open set in the z plane
exists so that, in this open set, each value of ŵ acts like a function of a
complex variable and satisfies the Cauchy–Riemann conditions. Except in
trivial cases in which the sheets of the Riemann surface do not interact with
each other, analytic extension leads to a migration onto other sheets.

We superimpose order arrows onto the Riemann surface by considering
the subset for which the value ŵ is real and positive. Starting at a specific
point on the Riemann surface for which ŵ has this property, up-arrows and
down-arrows can be traced out. In particular, if the approximation has
order p, then at z = 0, there are p + 1 up-arrows and p + 1 down-arrows
emanating from this point.

8.6. The Dahlquist second barrier

The famous second barrier result of Dahlquist (1963), states that an A-
stable linear multistep method cannot have order greater than 2. In our
context this means the following theorem.

Theorem 8.10. Let Φ(w, z) denote an (r, 1) A-stable approximation with
order p. Then p ≤ 2.

Although many proofs exist, we will here use an order arrow approach, if
only as an example of the use of this technique. Note that the approximation
is not assumed to be Padé.

Proof of Theorem 8.10. Because p > 2, and because up-arrows cannot be
tangential to the imaginary axis, there are at least 2 up-arrows leaving
the origin with directions in [−1

2π, 1
2π]. These arrows cannot terminate at

−∞ without crossing the imaginary axis. Hence there are at least 2 poles,
contrary to the assumption that s = 1.
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+

+

Figure 8.6. Order arrows for BDF3 (pole: , branch points: +).

This result is illustrated in Figure 8.6 where it is seen that only a single
up-arrow emanates from zero in a positive direction but two up-arrows which
terminate at −∞ are tangential to the imaginary axis. Note that two down-
arrows which emanate in the negative direction terminate at +∞ on lower
sheets.

8.7. The Daniel–Moore barrier

It was conjectured in Daniel and Moore (1970) that an order 2s, which is
achieved for Gauss–Legendre Runge–Kutta methods, cannot be exceeded,
except at the expense of A-stability. This was eventually proved in Wanner,
Hairer and Nørsett (1978) using order stars. The proof given here uses order
arrows.

Theorem 8.11. Let Φ(w, z) denote an (r, s) A-stable approximation with
order p. Then p ≤ 2s.

Proof. If the approximation is A-stable, at most s up-arrows emanate from
zero in the positive direction and terminate at poles. The next up-arrow
in the anticlockwise direction and the next up-arrow in the clockwise direc-
tion do not terminate at poles and must emanate in the negative direction.
Because the angle between up-arrows is 2π/(p + 1), it follows that

(s + 1)
2π

p + 1
> π,

implying that 2s ≥ p.

We present two order arrow diagrams to illustrate this result. First the
A-stable, [2, 0, 1] approximation with order 4. This is given in Figure 8.7.
Note that, because of the complicated behaviour on the real axis in which
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+
+

+

∞

1

0

w

x
Figure 8.7. Order arrows for [2, 0, 1] approximation
(poles: , zero: , branch points: +).

+

+

Figure 8.8. Order arrows for [2, 1, 1] approximation
(poles: , zero: , branch points: +).
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arrows on both sheets of the Riemann surface overlap, an additional view
is given, showing w as a function of x (the real part of z). Secondly, in
Figure 8.8, the [2, 1, 1] approximation with order 5 is given. That this
cannot be A-stable is seen from the up-arrows tangential to the imaginary
axis at zero.

The [2, 0, 1] and [2, 1, 1] approximations are given respectively by

Φ(w, z) = w2
(
1 − 8

11z + 2
11z2

)
− 16

11w + 5
11 + 2

11z,

Φ(w, z) = w2
(
1 − 12

23z + 2
23z2

)
− w

(
16
23 + 16

23z
)
− 7

23 − 2
23z.

8.8. The Butcher–Chipman conjecture

For an [n0, n1, n2] approximation, the value of 2n0 − p seems to be related
to possible A-stability. If 2n0 − p ≤ 0 then, from Theorem 8.11, A-stability
is impossible. On the other hand, if 2n0 − p > 2, there is no known case
in which A-stability occurs. For 2n0 − p ∈ {0, 1, 2}, most methods easily
analysed are A-stable but not always; for example [7, 0, 4] is not A-stable;
for this approximation,

Φ(w, z)=w2
(
1−1486

1651z+ 638
1651z2− 512

4953z3+ 31
1651z4− 58

24765z5+ 14
74295z6− 4

520065z7
)

− 2048
1651w + 397

1651 + 232
1651z + 56

1651z2 + 20
4953z3 + 1

4953z4. (8.10)

Write this as A(z)w2 +B(z)w +C(z) then, because |A(0)| > |C(0)|, we can
use the Schur criterion to find a simple necessary and sufficient condition
for A-stability. This is that

(
A(iy)A(−iy) − C(iy)C(−iy)

)2

−
(
A(iy)B(−iy) − C(−iy)B(iy)

)(
A(−iy)B(iy) − C(iy)B(−iy)

)

≥ 0, (8.11)

for all real y. In the case of (8.10), (8.11) evaluates to

− 3424256
245746955354703075y14 + O(y16).

After considerable numerical searching, the following statement was pro-
duced (Butcher and Chipman 1992).

Conjecture 8.12. A generalized Padé approximation with 2n0 − p > 2 is
not A-stable.

Note that in the statement of this conjecture, the w-degree is not specified
although most attempts at a proof have focused on the quadratic case. If
this degree is 1, then the result is covered by Theorem 8.9. Furthermore,
the method of proof for the linear case would easily generalize if it can be
shown that, for each pole, there exists an up-arrow emanating from zero
which terminates at this pole.
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9. Conclusions and inconclusions

If there is a single theme to the ideas presented here, it is that the general
linear method formulation has reached a reasonable level of maturity. The-
oretically they are quite well understood and practical methods, as well as
techniques for their implementation, are starting to be developed. However,
they are not simply a new class of methods, because they represent a new
way of looking at earlier and more established methods.

From many points of view, the general linear formulation is more natural
than the traditional way of understanding even traditional methods. A first
example concerns the order conditions for general linear methods which
actually give fresh insight into the significance and meaning of order for
traditional methods. This is especially true in the case of Runge–Kutta
methods, for which effective order is a clear-cut and useful generalization
which arises naturally from a general linear point of view.

A second example of new insight coming out of general linear methods
concerns non-linear stability. The irreducible formulation of linear multistep
methods can stand alongside one-leg methods as a valid way of understand-
ing G-stability and algebraic stability.

Although order arrows are not specific to general linear methods, they are
featured in this paper as a tool for studying the relationship between order
and stability, especially for multivalue multistage methods. They provide
alternative proofs to those made available by the use of order stars and give
a slightly different insight into some problems. The author would like to see
the two approaches used to examine new questions, with the expectation
that each of them will sometimes turn out to be the more convenient.

There is still much to be done in some of the areas identified in this
paper. It would be worthwhile to know more about the consequences of
algebraic stability. In particular, it would be valuable to know the extent to
which general linear methods can make worthwhile contributions towards
the development of structure-preserving algorithms.

However, there are already sufficiently challenging questions arising in the
construction of efficient new methods. The inherent Runge–Kutta stability
ansatz is promising as a source of methods but it is not yet known where to
search for the best methods in this already-large family.

Finally, more detailed information on the interplay between stability and
order is needed. It is a simple matter to determine in particular cases what
the order of an approximation is and whether or not it is A-stable. However,
there are quite likely some general patterns that can be identified and veri-
fied. The simplest outstanding question is the so-called Butcher–Chipman
conjecture and, in the view of this author, is an issue capable of resolution
using known techniques.
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